CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gu, Huimin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy
    (Elsevier, 2015-10-26) Gu, Jianglong; Ding, Jialuo; Williams, Stewart W.; Gu, Huimin; Bai, Jing; Zhai, Yuchun; Ma, Peihua
    Wire + Arc Additive Manufacture (WAAM) attracts great interest from the aerospace industry for producing components with aluminum alloys, particularly Al-Cu alloy of the 2000 series such as 2219 alloy. However the application is restricted by the low strength properties of the as-deposited WAAM metal. In this study two strengthening methods were investigated - inter-layer cold working and post-deposition heat treatment. Straight wall samples were prepared with 2319 aluminum alloy wire. Inter-layer rolling with loads of 15 kN, 30 kN and 45 kN were employed during deposition. The ultimate tensile strength (UTS) and yield strength (YS) of the inter-layer rolled alloy with 45 kN load can achieve 314. MPa and 244. MPa respectively. The influence of post-deposition T6 heat treatment was investigated on the WAAM alloy with or without rolling. Compared with inter-layer rolling, post-deposition heat treatment can provide much greater enhancement of the strength. After T6 treatment, the UTS and YS of both of the as-deposited and 45 kN rolled alloys exceeded 450. MPa and 305. MPa respectively, which are higher than the properties of the wrought 2219-T6 alloy. The strengthening mechanisms of this additively manufactured Al-6.3Cu alloy were investigated through microstructure analysis.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback