Browsing by Author "Gupta, Pankaj Kumar"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Assessment of LNAPL in subsurface under fluctuating groundwater table using 2D sand tank experiments(American Society of Civil Engineers, 2019-06-24) Gupta, Pankaj Kumar; Yadav, Basant; Yadav, Brijesh KumarThe focus of this study was to investigate the fate and transport of toluene, a light nonaqueous-phase liquids (LNAPLs) in the subsurface region under dynamic groundwater table conditions. A series of experiments were conducted using two-dimensional (2D) sand tank setup having dimensions 125×90×10 cm 125×90×10 cm (L×H×W L×H×W ) and integrated with an auxiliary column of inner diameter 14 cm and height 120 cm. Initially, a steady-state flow and LNAPL transport experiment was conducted under stable groundwater table condition. Thereafter, three groundwater table fluctuation experiments were conducted on a rising and falling groundwater table in 2, 4, and 8 h to maintain rapid, general, and slow fluctuation conditions, respectively. The pure phase of toluene was injected at a rate of 1 mL/min 1 mL/min for a total duration of 5 min. Soil-water and soil-vapor samples were periodically collected and analyzed for toluene concentrations. Later, the representation of the 2D sand tank setup was numerically simulated to obtain the response of flow and the LNAPL transport under varying groundwater table conditions. Analysis of the results shows that a large LNAPL pool area (250 cm 2 250 cm2 ) develops under rapidly fluctuating groundwater conditions, which significantly enhances the dissolution rate and contributes to a high concentration of dissolved LNAPLs at the receiving receptors. Estimated values of Sherwood and Peclet numbers show that the dissolution rates were highly affected by groundwater table dynamics, which may cause loss of pure-phase pollutant mass around the pollutant source. The concentration isolines of toluene show that the transport of dissolved LNAPL plumes was also comparatively fast in the case of rapidly fluctuating groundwater. A high biodegradation rate was observed in plume regions having concentration ranges of 140–160 ppm, while it decreases in plume regions having very high (>160 ppm >160 ppm ) and low concentrations (<140 ppm <140 ppm ) of dissolved LNAPL. In the sand tank, microbial growth was found to increase as the plume moved away from the LNAPL pool toward a low gradient, which intensifies the detrimental impact of toluene on the survival of indigenous microorganisms near the LNAPL pool. The results of this study may help in implementing effective remediation techniques to decontaminate LNAPL polluted sites under fluctuating groundwater table conditions, especially in (semi)-arid coastal aquifers.Item Open Access Ensemble modelling framework for groundwater level prediction in urban areas of India(Elsevier, 2019-11-24) Yadav, Basant; Gupta, Pankaj Kumar; Patidar, Nitesh; Himanshu, Sushil KumarIndia is facing the worst water crisis in its history and major Indian cities which accommodate about 50% of its population will be among highly groundwater stressed cities by 2020. In past few decades, the urban groundwater resources declined significantly due to over exploitation, urbanization, population growth and climate change. To understand the role of these variables on groundwater level fluctuation, we developed a machine learning based modelling approach considering singular spectrum analysis (SSA), mutual information theory (MI), genetic algorithm (GA), artificial neural network (ANN) and support vector machine (SVM). The developed approach was used to predict the groundwater levels in Bengaluru, a densely populated city with declining groundwater water resources. The input data which consist of groundwater levels, rainfall, temperature, NOI, SOI, NIÑO3 and monthly population growth rate were pre-processed using mutual information theory, genetic algorithm and lag analysis. Later, the optimized input sets were used in ANN and SVM to predict monthly groundwater level fluctuations. The results suggest that the machine learning based approach with data pre-processing predict groundwater levels accurately (R > 85%). It is also evident from the results that the pre-processing techniques enhance the prediction accuracy and results were improved for 66% of the monitored wells. Analysis of various input parameters suggest, inclusion of population growth rate is positively correlated with decrease in groundwater levels. The developed approach in this study for urban groundwater prediction can be useful particularly in cities where lack of pipeline/sewage/drainage lines leakage data hinders physical based modelling.Item Open Access Leakage of CO2 from geological storage and its impacts on fresh soil–water systems: a review(Elsevier, 2020-03-03) Gupta, Pankaj Kumar; Yadav, BasantLeakage of CO2 from the geological storage is a serious issue for the sustainability of the receiving fresh soil–water systems. Subsurface water quality issues are no longer related to one type of pollution in many regions around the globe. Thus, an effort has been made to review studies performed to investigate supercritical CO2 (scCO2) and CO2 enrich brine migration and it's leakage from geological storage formations. Further, the study also reviewed it's impacts on fresh soil–water systems, soil microbes, and vegetation. The first part of the study discussed scCO2/CO2 enrich brine migration and its leakage from storage formations along with it's impact on pore dynamics of hydrological regimes. Later, a state-of-the-art literature survey has been performed to understand the role of CO2–brine leakage on groundwater dynamics and its quality along with soil microbes and plants. It is observed in the literature survey that most of the studies on CO2–brine migration in storage formations reported significant CO2–brine leakage due to over-pressurization through wells (injections and abandoned), fracture, and faults during CO2 injection. Thus, changes in the groundwater flow and water table dynamics can be the first impact of the CO2–brine leakage. Subsequently, three major alterations may also occur—(i) drop in pH of subsurface water, (ii) enhancement of organic compounds, and (iii) mobilization of metals and metalloids. Geochemical alteration depends on the amount of CO2 leaked and interactions with host rocks. Therefore, such alteration may significantly affect soil microbial dynamics and vegetation in and around CO2 leakage sites. In-depth analysis of the available literature fortifies that a proper subsurface characterization along with the bio-geochemical analysis is extremely important and should be mandatory to predict the more accurate risk of CO2 capture and storage activities on soil–water systems.