CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hönnige, Jan"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compression behaviour of wire+ arc additive manufactured structures
    (MDPI, 2021-05-27) Abbaszadeh, Masoud; Ventzke, Volker; Neto, Leonor; Riekehr, Stefan; Martina, Filomeno; Kashaev, Nikolai; Hönnige, Jan; Williams, Stewart; Klusemann, Benjamin
    Increasing demand for producing large-scale metal components via additive manufacturing requires relatively high building rate processes, such as wire + arc additive manufacturing (WAAM). For the industrial implementation of this technology, a throughout understanding of material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel fabricated by means of WAAM were investigated and compared with respect to their mechanical and microstructural properties, in particular under compression loading. The microstructure of WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction, and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic crystal planes in normal direction lead to an anisotropic behaviour under compression. Although AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure. Microhardness is related to grain morphology variations, where higher hardness near the inter-layer grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is observed. In summary, this study analyzes and compares the behaviour of three different materials fabricated by WAAM under compression loading, an important loading condition in mechanical post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be utilized for future modelling activities in this direction.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanical properties enhancement of additive manufactured Ti-6Al-4V by machine hammer peening
    (Springer , 2019-07-31) Williams, Stewart W.; Ding, Jialuo; Hönnige, Jan; Martina, Filomeno; Neto, Leonor
    Wire + Arc Additive Manufacturing (WAAM) is a technology potentially offering reduction of material wastage, costs and shorter lead-times. It is being considered as a technology that could replace conventional manufacturing processes of Ti-6Al-4V, such as machining from wrought or forged materials. However, WAAM Ti-6Al-4V is characterized by coarse β-grains, which can extend through several deposited layers resulting in strong texture and anisotropy. As a solution, inter-pass cold rolling has been proven to promote grain refinement, texture modification and improvement of material strength by plastically deforming the material between each deposited layer. Nevertheless, with the increased interest in the WAAM technology, the complexity and size of the deposited parts has increased, and its application can be hindered by the low speed and complex/costly equipment required to perform rolling at this scale. Therefore, Machine Hammer Peening (MHP) has been studied as an alternative cold work process. MHP can be used robotically, offering greater flexibility and speed, and it can be applied easily to any large-scale geometry. Similarly to rolling, MHP is applied between each deposited layer with the new ECOROLL peening machine and, consequently, it is possible to eliminate texturing and reduce the β-grains size from centimeters long to approximately 1 to 2 mm. This effect is studied for thin and thick walls and no considerable change in grain size is observed, proving the applicability of MHP to large components. The yield strength and ultimate tensile strength increases to 907 MPa and 993 MPa, respectively, while still having excellent ductility. This grain refinement may also improve fatigue life and induce a decrease in crack propagation rate. In this study, it has been shown that MHP is a suitable process for WAAM Ti-6Al-4V applications, can be applied robotically and the grain refinement induced by very small plastic deformations can increase mechanical properties.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Study of residual stress and microstructural evolution in as-deposited and inter-pass rolled wire plus arc additively manufactured Inconel 718 alloy after ageing treatment
    (Elsevier, 2020-10-14) Hönnige, Jan; Er Seow, Cui; Ganguly, Supriyo; Xua, Xiangfang; Cabeza, Sandra; Coules, Harry E.; Williams, Stewart
    The manufacture of structural components made from nickel-based super alloys would benefit from the commercial advantages of Wire + Arc Additive Manufacturing (WAAM), as it is commonly expensive to process using other conventional techniques. The two major challenges of WAAM are process residual stress and undesired microstructure. Residual stress causes part distortion and build failures, while the as-deposited microstructure does not allow the common heat-treatment to be effective in achieving the desired mechanical properties. This paper focuses on understanding the microstructural features, phase formation and three-dimensional residual stress state variation in as-deposited and inter-pass rolled conditions and after solutionising, quenching and ageing. The thermal history from successive deposition and cold working were correlated to the phase formation and macro residual stress formation and subsequent evolution. The {311} family of crystallographic planes were used as atomic strain gauge to determine the macrostrain and analysis of three dimensional stress state in different processing conditions. The measured strain were corrected for the compositional variation by measuring EDM machined d0 specimens manufactured under similar processing conditions. While the as-deposited part show significant stress redistribution and distortion after removal from the main fixture, inter-pass rolling was found to reduce part distortion significantly, the residual stress profile after inter-pass rolling showed highest tensile magnitude near the substrate while near the top of the deposit it was compressive as can be expected from the rolling process. The other two beneficial effects of inter-pass rolling on the microstructure are mitigation of the formation of undesired Laves-phase, thereby improving the response to solution treatment and aging together with significantly reduced grain size and texture. The application of inter-pass rolling reduces the potential part complexity, which however does not prevent the manufacture of common candidate parts, which are typically 1-to-1 replacements of forged, cast or machined from solid

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback