CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hadjivassiliou, Marios"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The cortical focus in childhood absence epilepsy; evidence from nonlinear analysis of scalp EEG recordings
    (Elsevier, 2018-01-08) Sarrigiannis, Ptolemaios G.; Zhao, Yifan; He, Fei; Billings, Stephen A.; Baster, Kathleen; Rittey, Chris; Yianni, John; Zis, Panagiotis; Wei, Hua-Liang; Hadjivassiliou, Marios; Grünewald, Richard
    Objective To determine the origin and dynamic characteristics of the generalised hyper-synchronous spike and wave (SW) discharges in childhood absence epilepsy (CAE). Methods We applied nonlinear methods, the error reduction ratio (ERR) causality test and cross-frequency analysis, with a nonlinear autoregressive exogenous (NARX) model, to electroencephalograms (EEGs) from CAE, selected with stringent electro-clinical criteria (17 cases, 42 absences). We analysed the pre-ictal and ictal strength of association between homologous and heterologous EEG derivations and estimated the direction of synchronisation and corresponding time lags. Results A frontal/fronto-central onset of the absences is detected in 13 of the 17 cases with the highest ictal strength of association between homologous frontal followed by centro-temporal and fronto-central areas. Delays consistently in excess of 4 ms occur at the very onset between these regions, swiftly followed by the emergence of “isochronous” (0-2ms) synchronisation but dynamic time lag changes occur during SW discharges. Conclusions In absences an initial cortico-cortical spread leads to dynamic lag changes to include periods of isochronous interhemispheric synchronisation, which we hypothesize is mediated by the thalamus. Significance Absences from CAE show ictal epileptic network dynamics remarkably similar to those observed in WAG/Rij rats which guided the formulation of the cortical focus theory.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tremor after long term lithium treatment; is it cortical myoclonus?
    (BMC (part of Springer Nature), 2019-05-22) Sarrigiannis, Ptolemaios Georgios; Zis, Panagiotis; Unwin, Zoe Charlotte; Blackburn, Daniel J.; Hoggard, Nigel; Zhao, Yifan; Billings, Stephen A.; Khan, Aijaz A.; Yianni, John; Hadjivassiliou, Marios
    Introduction: Tremor is a common side effect of treatment with lithium. Its characteristics can vary and when less rhythmical, distinction from myoclonus can be difficult. Methods: We identified 8 patients on long-term treatment with lithium that developed upper limb tremor. All patients were assessed clinically and electrophysiologically, with jerk-locked averaging (JLA) and cross-correlation (CC) analysis, and five of them underwent brain MRI examination including spectroscopy (MRS) of the cerebellum. Results: Seven patients (6 female) had action and postural myoclonus and one a regular postural and kinetic tremor that persisted at rest. Mean age at presentation was 58 years (range 42–77) after lengthy exposure to lithium (range 7–40 years). During routine monitoring all patients had lithium levels within the recommended therapeutic range (0.4-1 mmol/l). There was clinical and/or radiological evidence (on cerebellar MRS) of cerebellar dysfunction in 6 patients. JLA and/or CC suggested a cortical generator of the myoclonus in seven patients. All seven were on antidepressants and three additionally on neuroleptics, four of them had gluten sensitivity and two reported alcohol abuse. Conclusions: A synergistic effect of different factors appears to be contributing to the development of cortical myoclonus after chronic exposure to lithium. We hypothesise that the cerebellum is involved in the generation of cortical myoclonus in these cases and factors aetiologically linked to cerebellar pathology like gluten sensitivity and alcohol abuse may play a role in the development of myoclonus. Despite the very limited evidence in the literature, lithium induced cortical myoclonus may not be so rare.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback