Browsing by Author "Hall, Amanda"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access An autonomous rail-road amphibious robotic system for railway maintenance using sensor fusion and mobile manipulator(Elsevier, 2023-08-02) Liu, Haochen; Rahman, Miftahur; Rahimi, Masoumeh; Starr, Andrew; Durazo-Cardenas, Isidro; Ruiz-Carcel, Cristobal; Ompusunggu, Agusmian; Hall, Amanda; Anderson, RobertThe current maintenance of railway infrastructure replies heavily on human involvement, requiring possession of the track section during maintenance, resulting in high costs and inefficient execution. This paper proposes an autonomous rail-road amphibious robotic system for railway inspection and maintenance tasks. By virtue of its road and rail-autonomous mobility, it is able to execute the complete maintenance execution flow in multiple phases. The system provides flexible track job location access, low-cost maintenance execution, and reduced track network possession. The payload mobile manipulator and sensor fusion enhance the system's capabilities for multiple types of inspection and repair. The design of a command and control system was guided by a rule-based expert system strategy to enable remote operation of the whole system. The developed demonstrator of a track wheel accompanied unmanned ground vehicle was integrated and demonstrated in both operational and realistic track environments with multiple testing activities of remote operation, navigation, accurate job detection, inspection, and repair, confirming effective job completion and logical human interaction. The proposed method produces an outstanding hardware-software integrated robotic inspection and repair system with a high level of technological readiness for autonomous railway maintenance and intelligent railway asset management.Item Open Access Challenges for a railway inspection and repair system from railway infrastructure(IEEE, 2023-01-16) Rahman, Miftahur; Rahimi, Masoumeh; Starr, Andrew; Durazo-Cardenas, Isidro; Hall, Amanda; Anderson, RobertRobots and automation techniques are used in many industries for a long period because of the economic advantages and efficiency. Though the railway has a long history compared to other transportation systems, it still lacks wide application of modern technologies such as robots and AI. Track maintenance using robotic technologies has gained some attraction from both infrastructure managers and researchers due to safety and cost benefits. A Railway Inspection and Repair System (RIRS) has been proposed using commercially available Unmanned Ground Vehicles (UGV) and an industrial manipulator for the railway track inspection and repair tasks. The use of a specially designed trolley enables the on-track and off-track navigation capability of RIRS. The infrastructure in railway is very diversified and unique in size, shape, and remoteness compared to other industries. This research investigates the unique challenges to the operation of RIRS imposed by the railway infrastructure.Item Open Access Localisation and navigation framework for autonomous railway robotic inspection and repair system(SSRN, 2021-10-20) Rahimi, Masoumeh; Liu, Haochen; Rahman, Miftahur; Ruiz Carcel, Cristobal; Durazo-Cardenas, Isidro; Starr, Andrew; Hall, Amanda; Anderson, RobertIn the path towards the intelligent industrial 4.0, the railway industry is keen to develop intelligent asset management strategies for digitalization and smart management for rail infrastructure. It aims to both reduce the cost and exposure of human-labor, associated with track maintenance risk, as well as increase the autonomy and accuracy for the railway inspection and repair job. A Robotic Inspection and Repair System (RIRS) is proposed to undertake the automated railway maintenance consisting of the autonomous off-track travel between base workshop and track, road-rail conversion, autonomous on-track inspection, and repair as well as remote communicating to railway signaling system and infrastructure system. This paper presents a localization and navigation framework for this new autonomous system; applied to the mentioned railway maintenance job. This system comprises a commercial Unmanned Ground Vehicle (UGV, named Warthog) with a robotic manipulator (UR10e), and multiple onboard sensors including Lidar, camera, RTK GNSS, IMU, wheel odometry, and multiple types of cameras. An adaptive trolley is also designed for the purpose of road-rail conversion. This research also focuses on how to increase accuracy for the support of track defect detection and localization.Item Open Access A review on technologies for localisation and navigation in autonomous railway maintenance systems(MDPI, 2022-05-31) Rahimi, Masoumeh; Liu, Haochen; Durazo-Cardenas, Isidro; Starr, Andrew; Hall, Amanda; Anderson, RobertSmart maintenance is essential to achieving a safe and reliable railway, but traditional maintenance deployment is costly and heavily human-involved. Ineffective job execution or failure in preventive maintenance can lead to railway service disruption and unsafe operations. The deployment of robotic and autonomous systems was proposed to conduct these maintenance tasks with higher accuracy and reliability. In order for these systems to be capable of detecting rail flaws along millions of mileages they must register their location with higher accuracy. A prerequisite of an autonomous vehicle is its possessing a high degree of accuracy in terms of its positional awareness. This paper first reviews the importance and demands of preventive maintenance in railway networks and the related techniques. Furthermore, this paper investigates the strategies, techniques, architecture, and references used by different systems to resolve the location along the railway network. Additionally, this paper discusses the advantages and applicability of on-board-based and infrastructure-based sensing, respectively. Finally, this paper analyses the uncertainties which contribute to a vehicle’s position error and influence on positioning accuracy and reliability with corresponding technique solutions. This study therefore provides an overall direction for the development of further autonomous track-based system designs and methods to deal with the challenges faced in the railway network.Item Open Access A review on the prospects of mobile manipulators for smart maintenance of railway track(MDPI, 2023-05-25) Rahman, Miftahur; Liu, Haochen; Durazo-Cardenas, Isidro; Starr, Andrew; Hall, Amanda; Anderson, RobertInspection and repair interventions play vital roles in the asset management of railways. Autonomous mobile manipulators possess considerable potential to replace humans in many hazardous railway track maintenance tasks with high efficiency. This paper investigates the prospects of the use of mobile manipulators in track maintenance tasks. The current state of railway track inspection and repair technologies is initially reviewed, revealing that very few mobile manipulators are in the railways. Of note, the technologies are analytically scrutinized to ascertain advantages, unique capabilities, and potential use in the deployment of mobile manipulators for inspection and repair tasks across various industries. Most mobile manipulators in maintenance use ground robots, while other applications use aerial, underwater, or space robots. Power transmission lines, the nuclear industry, and space are the most extensive application areas. Clearly, the railways infrastructure managers can benefit from the adaptation of best practices from these diversified designs and their broad deployment, leading to enhanced human safety and optimized asset digitalization. A case study is presented to show the potential use of mobile manipulators in railway track maintenance tasks. Moreover, the benefits of the mobile manipulator are discussed based on previous research. Finally, challenges and requirements are reviewed to provide insights into future research.Item Open Access Towards an autonomous RIRS: design, structure investigation and framework(IEEE, 2021-04-02) Rahman, Miftahur; Liu, Haochen; Durazo-Cardenas, Isidro; Starr, Andrew; Hall, Amanda; Anderson, RobertAutomated robots have been deeply embedded in many industries for decades. Autonomous railway maintenance is attracting more attention, but few robotic technologies are used in rolling stock inspection and repair. Due to geometrical differences between rail and road, wheeled robots still need to fulfill research and deployment gaps for application in railway track maintenance. This research is intended to design an autonomous Robotic Inspection and Repair System (RIRS) for unmanned track maintenance. It mainly employs commercial Warthog Unmanned Ground Vehicle (UGV), Universal Robot (e.g., UR10e) manipulator, and multiple onboard sensors to achieve navigation to track, road-rail conversion, and on-track inspection and repair. With the support of a trolley, RIRS will achieve the ability to operate both on-track and off-track. This research also investigates the system structure of the on-track inspection and repair by considering the dynamic degree-of-freedom of both UGV wheels and the joints of robot manipulator. The redundancy of joints for the mobile manipulator has been reduced by proposing simplified joints which will improve the performance and efficiency. This research analyses the dynamic principles of a new maintenance system that will be deployed and tested in a prototype RIRS system in future work.