CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Haltas, Ismail"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Anaerobic digestion: a prime solution for water, energy and food nexus challenges
    (Elsevier, 2017-09-19) Haltas, Ismail; Suckling, James; Soutar, Iain; Druckman, Angela; Varga, Liz
    We solve the problem of identifying one or more optimal patterns of anaerobic digestion (AD) installation across the UK, by considering existing installations, the current feedstock potential and the project growth of the potential via population, demography and urbanization. We test several scenarios for the level of adoption of the AD operations in the community under varying amounts of feedstock supply, which may arise from change in food waste or energy crops generation via other policies and incentives. For the most resilient scales of solutions, we demonstrate for the UK the net energy production (bio-gas and electricity) from AD (and so the avoided emissions from grid energy), the mass of bio-waste processed (and avoided land-fill), and the quantum of digestate produced (as a proxy for avoided irrigation and fertilizer production). In order to simulate the AD innovation within WEF nexus we use agent based modelling (ABM) owing to its bottom-up approach and capability of modelling complex systems with relatively low level data and information.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Engaging stakeholders in research to address water-energy-food (WEF) nexus challenges
    (Springer, 2018-04-04) Hoolohan, C.; Larkin, A.; McLachlan, C.; Falconer, R.; Soutar, I.; Suckling, J.; Varga, Liz; Haltas, Ismail; Druckman, A.; Lumbroso, D.; Scott, M.; Gilmour, D.; Ledbetter, R.; McGrane, S.; Mitchell, C.; Yu, D.
    The water–energy–food (WEF) nexus has become a popular, and potentially powerful, frame through which to analyse interactions and interdependencies between these three systems. Though the case for transdisciplinary research in this space has been made, the extent of stakeholder engagement in research remains limited with stakeholders most commonly incorporated in research as end-users. Yet, stakeholders interact with nexus issues in a variety of ways, consequently there is much that collaboration might offer to develop nexus research and enhance its application. This paper outlines four aspects of nexus research and considers the value and potential challenges for transdisciplinary research in each. We focus on assessing and visualising nexus systems; understanding governance and capacity building; the importance of scale; and the implications of future change. The paper then proceeds to describe a novel mixed-method study that deeply integrates stakeholder knowledge with insights from multiple disciplines. We argue that mixed-method research designs—in this case orientated around a number of cases studies—are best suited to understanding and addressing real-world nexus challenges, with their inevitable complex, non-linear system characteristics. Moreover, integrating multiple forms of knowledge in the manner described in this paper enables research to assess the potential for, and processes of, scaling-up innovations in the nexus space, to contribute insights to policy and decision making.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Numerical simulation of flood wave propagation in two-dimensions in densely populated urban areas due to dam break
    (Springer, 2016-06-01) Haltas, Ismail; Elçi, S.; Tayfur, G.
    Dams are important structures having many functions such as water supply, flood control, hydroelectric power and recreation. Although dam break failures are very rare events, dams can fail with little warning and the damage at the downstream of the dam due to the flood wave can be catastrophic. During a dam failure, immense volume of water is mobilized at very high speed in a very short time. The momentum of the flood wave can turn to a very destructive impact force in residential areas. Therefore, from risk point of view, understanding the consequences of a possible dam failure is critically important. This study deals with the methodology utilized for predicting the flood wave occurring after the dam break and analyses the propagation of the flood wave downstream of the dam. The methodology used in this study includes creation of bathymetric, DEM and land use maps; routing of the flood wave along the valley using a 1D model; and two dimensional numerical modeling of the propagation and spreading of flood wave for various dam breaching scenarios in two different urban areas. Such a methodology is a vital tool for decision-making process since it takes into account the spatial heterogeneity of the basin parameters to predict flood wave propagation downstream of the dam. Proposed methodology is applied to two dams; Porsuk Dam located in Eskişehir and Alibey Dam located in Istanbul, Turkey. Both dams are selected based on the fact that they have dense residential areas downstream and such a failure would be disastrous in both cases. Model simulations based on three different dam breaching scenarios showed that maximum flow depth can reach to 5 m at the border of the residential areas both in Eskişehir and in Istanbul with a maximum flow velocity of 5 m/s and flood waves having 0.3 m height reach to the boundary of the residential area within 1 to 2 h. Flooded area in Eskişehir was estimated as 127 km2, whereas in Istanbul this area was 8.4 km2 in total.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Reducing industrial energy demand in the UK: A review of energy efficiency technologies and energy saving potential in selected sectors
    (Elsevier, 2018-07-26) Chowdhury, Jahedul Islam; Hu, Yukun; Haltas, Ismail; Balta-Ozkan, Nazmiye; Matthew, George Jr.; Varga, Liz
    Currently UK industrial and manufacturing sectors are facing dual challenges of contributing to national 80% reduction targets in CO2 emissions by 2050 (compared to 1990 levels) and improving economic competitiveness in the face of low cost imports. Since energy consumption is the main source of CO2 emissions and directly related to products being manufactured, improving energy efficiency in energy intensive sectors is key to achieve CO2 targets. Energy consumption is unlikely to meet the targets unless energy efficiency opportunities and technologies are fully explored and timely changes are made to business models and policies This study explores potential energy efficiency improvements from three perspectives: system efficiency of steam networks, waste heat recovery technologies and bioenergy/waste utilisation. Two UK energy-intensive sectors, iron and steel, and food and drink, are selected for analysis and discussion. Potential business models for energy efficiency are also reviewed as there are now a variety of energy service companies who can support adoption of appropriate technologies. Furthermore, drivers and barriers to the adoption of energy efficiency technologies are considered in this paper revealing the factors affecting the diffusion of energy efficient and waste heat recovery technologies and their interactions and interdependencies to energy consumptions. Findings show that it is possible to achieve energy consumption reduction in excess of 15% from a technical point of view, however improving energy efficiency in UK industry has been hindered due to some inter-related technical, economic, regulatory and social barriers. The findings help to demonstrate the significant potential for energy efficiency improvement in two industrial sectors, as well as showing the specific types of technologies relevant for different sectoral processes. The range of business models show opportunities for implementation and for developing innovative business models, addressing barriers, and using enablers to accelerate the diffusion of energy efficiency technologies in UK industry.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback