CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hamer, Alex M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mapping agricultural land in Afghanistan’s opium provinces using a generalised deep learning model and medium resolution satellite imagery
    (MDPI, 2023-09-26) Simms, Daniel M.; Hamer, Alex M.; Zeiler, Irmgard; Vita, Lorenzo; Waine, Toby W.
    Understanding the relationship between land use and opium production is critical for monitoring the dynamics of poppy cultivation and developing an effective counter narcotics policy in Afghanistan. However, mapping agricultural land accurately and rapidly is challenging, as current methods require resource-intensive and time consuming manual image-interpretation. Deep convolutional neural nets have been shown to greatly reduce the manual effort in mapping agriculture from satellite imagery but require large amounts of densely labelled training data for model training. Here we develop a generalised model using past images and labels from different medium resolution satellite sensors for fully automatic agricultural land classification using the latest medium resolution satellite imagery. The model (FCN-8) is first trained on Disaster Monitoring Constellation (DMC) satellite images from 2007 to 2009. The effect of shape, texture and spectral features on model performance are investigated along with normalisation in order to standardise input medium resolution imagery from DMC, Landsat-5, Landsat-8, and Sentinel-2 for transfer learning between sensors and across years. Textural features make the highest contribution to overall accuracy (∼73%) while the effect of shape is minimal. The model accuracy on new images, with no additional training, is comparable to visual image interpretation (overall > 95%, user accuracy > 91%, producer accuracy > 85%, and frequency weighted intersection over union > 67%). The model is robust and was used to map agriculture from archive images (1990) and can be used in other areas with similar landscapes. The model can be updated by fine tuning using smaller, sparsely labelled datasets in the future. The generalised model was used to map the change in agricultural area in Helmand Province, showing the expansion of agricultural land into former desert areas. Training generalised deep learning models using data from both new and long-term EO programmes, with little or no requirement for fine tuning, is an exciting opportunity for automating image classification across datasets and through time that can improve our understanding of the environment.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Replacing human interpretation of agricultural land in Afghanistan with a deep convolutional neural network
    (Taylor and Francis, 2021-01-18) Hamer, Alex M.; Simms, Daniel M.; Waine, Toby William
    Afghanistan’s annual opium survey relies upon time-consuming human interpretation of satellite images to map the area of potential poppy cultivation for statistical sample design. Deep Convolutional Neural Networks (CNNs) have shown ground-breaking performance for image classification tasks by encoding local contextual information, in some cases outperforming trained analysts. In this study, we investigate the development of a CNN to automate the classification of agriculture from medium-resolution satellite imagery as an alternative to manual interpretation. The residual network (ResNet50) CNN architecture was trained and validated for delineating the agricultural area using labelled multi-seasonal Disaster Monitoring Constellation (DMC) satellite imagery (32 m) of Helmand and Kandahar provinces. The effect of input image chip size, training sampling strategy, elevation data, and multi-seasonal imagery were investigated. The best-performing single-year classification used an input chip size of 33 × 33 pixels, a targeted sampling strategy and transfer learning, resulting in high overall accuracy (94%). The inclusion of elevation data marginally lowered performance (93%). Multi-seasonal classification achieved an overall accuracy of 89% using the previous two years’ data. Only 25% of the target year’s training samples were necessary to update the model to achieve >94% overall accuracy. A data-driven approach to automate agricultural mask production using CNNs is proposed to reduce the burden of human interpretation. The ability to continually update CNN models with new data has the potential to significantly improve automatic classification of vegetation across years

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback