Browsing by Author "Hao, Huaying"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Angle-closure assessment in anterior segment OCT images via deep learning(Elsevier, 2021-01-07) Hao, Huaying; Zhao, Yitian; Yan, Qifeng; Higashita, Risa; Zhang, Jiong; Zhao, Yifan; Xu, Yanwu; Li, Fei; Zhang, Xiulan; Liu, JiangPrecise characterization and analysis of anterior chamber angle (ACA) are of great importance in facilitating clinical examination and diagnosis of angle-closure disease. Currently, the gold standard for diagnostic angle assessment is observation of ACA by gonioscopy. However, gonioscopy requires direct contact between the gonioscope and patients’ eye, which is uncomfortable for patients and may deform the ACA, leading to false results. To this end, in this paper, we explore a potential way for grading ACAs into open-, appositional- and synechial angles by Anterior Segment Optical Coherence Tomography (AS-OCT), rather than the conventional gonioscopic examination. The proposed classification schema can be beneficial to clinicians who seek to better understand the progression of the spectrum of angle-closure disease types, so as to further assist the assessment and required treatment at different stages of angle-closure disease. To be more specific, we first use an image alignment method to generate sequences of AS-OCT images. The ACA region is then localized automatically by segmenting an important biomarker - the iris - as this is a primary structural cue in identifying angle-closure disease. Finally, the AS-OCT images acquired in both dark and bright illumination conditions are fed into our Multi-Sequence Deep Network (MSDN) architecture, in which a convolutional neural network (CNN) module is applied to extract feature representations, and a novel ConvLSTM-TC module is employed to study the spatial state of these representations. In addition, a novel time-weighted cross-entropy loss (TC) is proposed to optimize the output of the ConvLSTM, and the extracted features are further aggregated for the purposes of classification. The proposed method is evaluated across 66 eyes, which include 1584 AS-OCT sequences, and a total of 16,896 images. The experimental results show that the proposed method outperforms existing state-of-the-art methods in applicability, effectiveness, and accuracy.Item Open Access Randomness-restricted diffusion model for ocular surface structure segmentation(Institute of Electrical and Electronics Engineers (IEEE), 2024) Guo, Xinyu; Wen, Han; Hao, Huaying; Zhao, Yifan; Meng, Yanda; Liu, Jiang; Zheng, Yalin; Chen, Wei; Zhao, YitianOcular surface diseases affect a significant portion of the population worldwide. Accurate segmentation and quantification of different ocular surface structures are crucial for the understanding of these diseases and clinical decision-making. However, the automated segmentation of the ocular surface structure is relatively unexplored and faces several challenges. Ocular surface structure boundaries are often inconspicuous and obscured by glare from reflections. In addition, the segmentation of different ocular structures always requires training of multiple individual models. Thus, developing a one-model-fits-all segmentation approach is desirable. In this paper, we introduce a randomness-restricted diffusion model for multiple ocular surface structure segmentation. First, a time-controlled fusion-attention module (TFM) is proposed to dynamically adjust the information flow within the diffusion model, based on the temporal relationships between the network's input and time. TFM enables the network to effectively utilize image features to constrain the randomness of the generation process. We further propose a low-frequency consistency filter and a new loss to alleviate model uncertainty and error accumulation caused by the multi-step denoising process. Extensive experiments have shown that our approach can segment seven different ocular surface structures. Our method performs better than both dedicated ocular surface segmentation methods and general medical image segmentation methods. We further validated the proposed method over two clinical datasets, and the results demonstrated that it is beneficial to clinical applications, such as the meibomian gland dysfunction grading and aqueous deficient dry eye diagnosis.