CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hart Prieto, Maria Consuelo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Applications of Raman spectroscopy to urology
    (Cranfield University, 2006-07) Hart Prieto, Maria Consuelo; Wright, M.; Ritchie, A. W.; Stone, Nicholas
    Raman spectroscopy is an optical technique that can interrogate biological tissues. In doing so it gives us an understanding of the changes in the molecular structure that are associated with disease development. The Kerr gating technique uses a picosecond pulsed laser and fast temporal gating of inelastically (Raman) scattered light. The tissue samples used were taken following fully informed consent and ethics approval. Bladder samples were obtained by taking a biopsy during a TURBT or TURP, prostate samples were taken during TURP and the liver and kidney (pigs) were bought at a supermarket. The bladder and prostate samples were snap frozen in liquid nitrogen and stored in an -80°C freezer until required for experimentation. The liver and kidney tissue were used fresh. The constituent samples were bought from Sigma – Aldrich. Multivariate and least squares analysis were used to ascertain the biochemical basis of the differing pathologies within the bladder and the prostate gland, as well as to test diagnostic algorithms produced by a colleague in our group. Depth profiling through the bladder and prostate gland was shown to be feasible by utilizing the Kerr gating technique as was the suppression of fluorescence from dark tissue (liver and kidney). We have shown for the first time, that we can utilise Raman spectroscopy to determine the biochemical basis of pathologies of the bladder and the prostate gland. With the help of the Kerr gating technique we also obtained spectra from different depths through them. We also suppressed fluorescence and resonantly enhanced Raman spectra from dark tissue. These have major implications in terms of understanding pathogenesis and disease progression and also the potential to accurately assess depth of tumour invasion.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback