Browsing by Author "He, Ning"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Impeller diffuser interactions in high speed centrifugal compressors(Cranfield University, 2001-09) He, Ning; Elder, R. L.In the current research work, a computational analysis of a high-speed centrifugal compressor stage for turbocharger applications is presented. A detailed investigation about the interactions between backswept impeller and downstream vaneless and vaned diffusers is carried out. ' A unshrouded backswept impeller with splitters was combined with a vaneless diffuser or a number of different designs of vaned diffusers. The CFD solver CFX-TASCow was used. The three-dimensional Reynolds- Averaged Navier-Stokes equations are solved and a pressure correction method is employed to solve the system of equations. A steady simulation and analysis of the interactions between the impeller and the vaneless diffuser is carried out, emphasis is focused on the comparisons of the different interactions at different conditions regarding the flow structures at different radius ratios, effect of rotational speed, mass flow rate and impeller tip clearance. The predicted results were also compared with the available experimental results in terms of radial Velocity, tangential Velocity and flow angle. In general, the predicted results show a reasonable agreement with the experimental data. A steady state simulation and analysis regarding the interaction between the impeller and various vaned diffusers is carried out. For the interface between the rotational impeller outlet and the stationary vaned diffuser inlet, the stage averaging condition is used. A detailed comparison between the predicted and the available experimental data is performed in terms of static pressure rise, total pressure ratio, choking mass flow and efficiency characteristics, and very good agreement is accomplished. In addition, detailed flow distributions are compared, assessed and critically analysed, regarding different number of diffuser vanes, rotational speed, gap between the leading edge of the vaned diffuser and impeller tip, mass flow rate. Emphasis is focused on the steady state study of the effect of the number of diffuser vanes on the stage operating range. Further more, unsteady simulation and analysis regarding the interactions between backswept impeller and downstream vaned diffusers is carried out. In the unsteady simulation, a geometry scaling method is used to modify the diffuser geometry to the nearest integer pitch ratio while keeping the throat area, flow direction and area ratio unchanged in order to deal with the unequal pitch ratio problems which exist in the unsteady simulation. The unsteady investigation was undertaken regarding different number of diffuser vanes, rotational speed, gap between the leading edge of the vaned diffuser and impeller tip, mass flow rate and impeller tip clearance. The detailed interactions at different conditions are compared, assessed and analysed. The studies focus on the analyses of the effect of the different interactions on the stage operating range, peak efficiency, total pressure ratio, level of unsteadiness, flow structures, flow angle or incidence angle, etc. In addition, the' predicted results are compared with available experimental data and a quite good agreement is achieved although the geometry is scaled. On the other hand, a detailed investigation on the differences between the time averaged unsteady simulation results and steady simulation results was performed at different conditions. The comparisons were carried out regarding static pressure, total pressure, speed, flow angle (or incidence angle) and isentropic efficiency. The investigation confirms that unsteady simulation is still quite important, since some of the steady state simulation results are still not similar to the time averaged ones. Designers should take into account the influence of the unsteadiness on the flow fields when they employ the steady state model in the design process.Item Open Access Multi-objective optimization of energy consumption and surface quality in nanofluid SQCL assisted face milling(MDPI, 2019-02-21) Khan, Aqib Mashood; Jamil, Muhammad; Salonitis, Konstantinos; Sarfraz, Shoaib; Zhao, Wei; He, Ning; Mia, Mozammel; Zhao, GuoLongConsidering the significance of improving the energy efficiency, surface quality and material removal quantity of machining processes, the present study is conducted in the form of an experimental investigation and a multi-objective optimization. The experiments were conducted by face milling AISI 1045 steel on a Computer Numerical Controlled (CNC) milling machine using a carbide cutting tool. The Cu-nano-fluid, dispersed in distilled water, was impinged in small quantity cooling lubrication (SQCL) spray applied to the cutting zone. The data of surface roughness and active cutting energy were measured while the material removal rate was calculated. A multi-objective optimization was performed by the integration of the Taguchi method, Grey Relational Analysis (GRA), and the Non-Dominated Sorting Genetic Algorithm (NSGA-II). The optimum results calculated were a cutting speed of 1200 rev/min, a feed rate of 320 mm/min, a depth of cut of 0.5 mm, and a width of cut of 15 mm. It was also endowed with a 20.7% reduction in energy consumption. Furthermore, the use of SQCL promoted sustainable manufacturing. The novelty of the work is in reducing energy consumption under nano fluid assisted machining while paying adequate attention to material removal quantity and the product’s surface quality.Item Open Access Multi-response optimisation of machining aluminium-6061 under eco-friendly electrostatic minimum quantity lubrication environment(Inderscience, 2019-10-09) Jamil, Muhammad; Khan, Aqib Mashood; He, Ning; Li, Liang; Zhao, Wei; Sarfraz, ShoaibThe emerging grave consequences of conventional coolants on health, ecology and product quality, have pushed the scientific research to explore eco-friendly lubrication technique. Electrostatic minimum quantity lubrication (EMQL) has been underscored as a burgeoning technology to cut-down bete noire impacts in machining. This research confers the adoption of a negatively charged cold mist of air-castor oil employed in turning of aluminium-6061T6 material by varying the cutting conditions, as per experimental designed through response surface methodology (RSM). For comprehensive sagacity, a range of cutting speed, feed, depth of cut and EMQL-flow rate were considered. Material removal rate, tool life, surface roughness and power consumption of machine tool were adopted as performance measures. To satisfy multi-criterion simultaneously, RSM-based grey relational analysis (GRA) was employed for multi-objective optimisation. Highest proportion of grey relational grade (GRG) as a single desideratum response function, provided a trade-off between performance measures with 15.56% improvement in GRG.