Browsing by Author "Hollis, J. M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access The contribution of soil structural degradation to catchment flooding: a preliminary investigation of the 2000 floods in England and Wales(European Geosciences Union / Copernicus Publications, 2003-01-01T00:00:00Z) Holman, Ian P.; Hollis, J. M.; Bramley, M. E.; Thompson, T. R. E.During the autumn of 2000, England and Wales experienced the wettest conditions for over 270 years, causing significant flooding. The exceptional combination of a wet spring and autumn provided the potential for soil structural degradation. Soils prone to structural degradation under five common lowland cropping systems (autumn-sown crops, late-harvested crops, field vegetables, orchards and sheep fattening and livestock rearing systems) were examined within four catchments that experienced serious flooding. Soil structural degradation of the soil surface, within the topsoil or at the topsoil/subsoil junction, was widespread in all five cropping systems, under a wide range of soil types and in all four catchments. Extrapolation to the catchment scale suggests that soil structural degradation may have occurred on approximately 40% of the Severn, 30–35 % of the Yorkshire Ouse and Uck catchments and 20% of the Bourne catchment. Soil structural conditions were linked via hydrological soil group, soil condition and antecedent rainfall conditions to SCS Curve Numbers to evaluate the volume of enhanced runoff in each catchment. Such a response at the catchment-scale is only likely during years when prolonged wet weather and the timing of cultivation practices lead to widespread soil structural degradation. Nevertheless, an holistic catchment-wide approach to managing the interactions between agricultural land use and hydrology, allowing appropriate runoff (and consequent flooding) to be controlled at source, rather than within the floodplain or the river channel, should be highlighted in catchment flood management plan.Item Open Access Using a linked soil model emulator and unsaturated zone leaching model to account for preferential flow when assessing the spatially distributed risk of pesticide leaching to groundwater in England and Wales(Elsevier Science B.V., Amsterdam., 2004-01-05T00:00:00Z) Holman, Ian P.; Dubus, Igor G.; Hollis, J. M.; Brown, Colin D.Although macropore flow is recognized as an important process for the transport of pesticides through a wide range of soils, none of the existing spatially distributed methods for assessing the risk of pesticide leaching to groundwater account for this phenomenon. The present paper presents a spatially distributed modelling system for predicting pesticide losses to groundwater through micro- and macropore flow paths. The system combines a meta version of the mechanistic, dual porosity, preferential flow pesticide leaching model MACRO (the MACRO emulator), which describes pesticide transport and attenuation in the soil zone, to an attenuation factor leaching model for the unsaturated zone. The development of the emulator was based on the results of over 4000 MACRO model simulations. Model runs describe pesticide leaching for the range of soil types, climate regimes, pesticide properties and application patterns in England and Wales. Linking the MACRO emulator to existing spatial databases of soil, climate and compound-specific loads allowed the prediction of the concentration of pesticide leaching from the base of the soil profile (at 1 m depth) for a wide range of pesticides. Attenuation and retardation of the pesticide during transit through the unsaturated zone to the watertable was simulated using the substrate attenuation factor model AQUAT. The MACRO emulator simulated pesticide loss in 10 of 12 lysimeter soil-pesticide combinations for which pesticide leaching was shown to occur and also successfully predicted no loss from 3 soil-pesticide combinations. Although the qualitative aspect of leaching was satisfactorily predicted, actual pesticide concentrations in leachate were relatively poorly predicted. At the national scale, the linked MACRO emulator / AQUAT system was found to predict the relative order of, and realistic regional patterns of, pesticide leaching for atrazine, isoproturon, chlorotoluron and lindane. The methodology provides a first-step assessment of the potential for pesticide leaching to groundwater in England and Wales. Further research is required to improve the modelling concept proposed. The system can be used to refine regional groundwater monitoring system designs and sampling strategies and improve the cost-effectiveness of the measures needed to achieve “good status” of groundwater quality as required by the Water Framework DirectItem Open Access Validation of an intrinsic groundwater pollution vulnerability methodology using a national nitrate database.(Springer Science Business Media, 2005-10-01T00:00:00Z) Holman, Ian P.; Palmer, R. C.; Bellamy, Patricia H.; Hollis, J. M.The importance of groundwater for potable supply, and the many sources of anthropogenic contamination, has led to the development of intrinsic groundwater vulnerability mapping. An Analysis of Co-Variance and Analysis of Variance are used to validate the extensively applied UK methodology, based upon nitrate concentrations from 1,108 boreholes throughout England and Wales. These largely confirm the current aquifer and soil leaching potential classifications and demonstrate the benefits of combining soil and low permeability drift information. European legislation such as the Water Framework Directive will require more dynamic assessments of pollutant risk to groundwater. These results demonstrate that a number of improvements are required to future intrinsic groundwater vulnerability methodologies. The vertical succession of geological units must be included, so that non-aquifers can be zoned in the same way as aquifers for water supply purposes, while at the same time recognising their role in influencing the quality of groundwater in deeper aquifers. Classifications within intrinsic vulnerability methodologies should be based upon defined diagnostic properties rather than expert judgement. Finally the incorporation into groundwater vulnerability methodologies of preferential flow in relation to geological deposits, soil type and land management practices represents a significant, but important, future challenge.