CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Horn, Andreas"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Augmented visualization cues on primary flight display facilitating pilot's monitoring performance
    (Elsevier, 2019-11-14) Li, Wen-Chin; Horn, Andreas; Sun, Zhen; Zhang, Jingyi; Braithwaite, Graham
    There have been many aviation accidents and incidents related to mode confusion on the flight deck. The aim of this research is to evaluate human-computer interactions on a newly designed augmented visualization Primary Flight Display (PFD) compared with the traditional design of PFD. Based on statistical analysis of 20 participants interaction with the system, there are significant differences on pilots’ pupil dilation, fixation duration, fixation counts and mental demand between the traditional PFD design and augmented PFD. The results demonstrated that augmented visualisation PFD, which uses a green border around the “raw data” of airspeed, altitude or heading indications to highlight activated mode changes, can significantly enhance pilots’ situation awareness and decrease perceived workload. Pilots can identify the status of flight modes more easily, rapidly and accurately compared to the traditional PFD, thus shortening the response time on cognitive information processing. This could also be the reason why fixation durations on augmented PFDs were significantly shorter than traditional PFDs. The augmented visualization in the flight deck improves pilots’ situation awareness as indicated by increased fixation counts related to attention distribution. Simply highlighting the parameters on the PFD with a green border in association with relevant flight mode changes will greatly reduce pilots’ perceived workload and increase situation awareness. Flight deck design must focus on methods to provide pilots with enhanced situation awareness, thus decreasing cognitive processing requirements by providing intuitive understanding in time limited situations.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback