Browsing by Author "Hough, Rupert L."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Evaluating fugacity models for trace components in landfill gas.(Elsevier Science B.V., Amsterdam., 2006-12-01T00:00:00Z) Shafi, Sophie; Sweetman, Andrew; Hough, Rupert L.; Smith, Richard; Rosevear, Alan; Pollard, Simon J. T.A fugacity approach was evaluated to reconcile loadings of vinyl chloride (chloroethene), benzene, 1,3-butadiene and trichloroethylene in waste with concentrations observed in landfill gas monitoring studies. An evaluative environment derived from fictitious but realistic properties such as volume, composition, and temperature, constructed with data from the Brogborough landfill (UK) test cells was used to test a fugacity approach to generating the source term for use in landfill gas risk assessment models (e.g. GasSim). SOILVE, a dynamic Level II model adapted here for landfills, showed greatest utility for benzene and 1,3-butadiene, modelled under anaerobic conditions over a 10 year simulation. Modelled concentrations of these components (95 300 μg m−3; 43 μg m−3) fell within measured ranges observed in gas from landfills (24 300–180 000 μg m−3; 20–70 μg m−3). This study highlights the need (i) for representative and time-referenced biotransformation data; (ii) to evaluate the partitioning characteristics of organic matter within waste systems and (iii) for a better understanding of the role that gas extraction rate (flux) plays in producing trace component concentrationsItem Open Access Identifying source correlation parameters for hydrocarbon wastes using compound- specific isotope analysis.(Elsevier Science B.V., Amsterdam., 2006-10-01T00:00:00Z) Hough, Rupert L.; Whittaker, Martin; Fallick, Anthony E.; Preston, Tom; Farmer, John G.; Pollard, Simon J. T.A preliminary evaluation of compound-specific isotope analysis (CSIA) as a novel, alternative method for identifying source correlation compounds in soils contaminated with residual heavy or weathered petroleum wastes is presented. Oil-contaminated soil microcosms were established using soil (sandy-loam, non- carbonaceous gley) amended with ballast-, crude- or No.6 fuel oil. Microcosms were periodically sampled over 256 days and δ13C values (which express the ratio of 13C to 12C) determined at each time point for five n-alkanes and the isoprenoid norpristane using gas chromatography–isotope ratio mass spectrometry (GC-IRMS). Although some temporal variation was observed, no significant temporal shifts in the δ13C values for the five n-alkanes were measured in all three oils. Isoprenoid isotope ratios (δ13C) appeared to be least affected by biotransformation, especially in the No.6 fuel oil. The research suggests that the δ13C of isoprenoids such as norpristane, may be of use as source correlation parameters. Compound-specific isotope analysis (CSIA) is a promising method for identifying source correlation compounds in soils contaminated with heavy or weathered petroleum wItem Open Access Optimising the biopiling of weathered hydrocarbons within a risk management framework - PROMISE.(2005-04-01T00:00:00Z) Pollard, Simon J. T.; Hough, Rupert L.; Brassington, Kirsty J.; Sinke, Anja; Crossley, Jane; Paton, Graeme I.; Semple, Kirk T.; Risdon, Graeme C.; Jackman, Simon J.; Bone, B.; Jacobsen, Christian; Lethbridge, GordonThirty years of research into petroleum microbiology and bioremediation have bypassed an important observation – that many hydrocarbon contaminated sites posing potential risks to human health harbour weathered, ‘mid-distillate’ or heavy oils (Pollard, 2003). Ex-situ biopiling is an important technology for treating soils contaminated with weathered hydrocarbons. However, its performance continues to be represented by reference to reductions in the hydrocarbon ‘load’ in the soils being treated, rather than reductions in the risks posed by the hydrocarbon contamination (Owens and Bourgouin, 2003; Tien et al., 1999). The absence of ‘risk’ from the vocabulary of many operators and remediation projects reduces stakeholder (regulatory, investor, landowner, and public) confidence in remediation technologies, and subsequently limits the market potential of these technologies. Stakeholder confidence in the biopiling of weathered hydrocarbons may therefore be improved by demonstrating process optimisation within a validated risk management framework. To address these issues, a consortium led by Cranfield University’s Integrated Waste Management Centre has secured funding from the Government’s Bioremediation LINK programme. Project PROMISE (involving BP, SecondSite Regeneration Ltd., Dew Remediation Ltd., TES Bretby (Mowlem Group), technology translators PERA, and academics from Aberdeen, Cranfield and Lancaster Universities) aims to improve market confidence in biopiling by demonstrating how this treatment may be applied within a risk mItem Open Access Optimising the biopiling of weathered hydrocarbons within a risk management framework.(2005-10-01T00:00:00Z) Hough, Rupert L.; Brassington, Kirsty J.; Sinke, Anja; Crossley, Jane; Paton, Graeme I.; Semple, Kirk T.; Risdon, Graeme C.; Jacobsen, Christian; Daly, Paddy; Jackman, Simon J.; Lethbridge, Gordon; Pollard, Simon J. T.Thirty years of research into petroleum microbiology and bioremediation have bypassed an important observation – that many hydrocarbon contaminated sites posing potential risks to human health harbour weathered, ‘mid-distillate’ or heavy oils rather than ‘fresh product’ (Pollard, 2003). Ex-situ biopiling is an important technology for treating soils contaminated with weathered hydrocarbons. However, its performance continues to be represented by reference to reductions in the hydrocarbon ‘load’ in the soils being treated, rather than reductions in the risks posed by the hydrocarbon contamination (Owens and Bourgouin, 2003; Tien et al., 1999). The absence of ‘risk’ from the vocabulary of many operators and remediation projects reduces stakeholder (regulatory, investor, landowner, and public) confidence in remediation technologies, and subsequently limits the market potential of these technologies. Stakeholder confidence in the biopiling of weathered hydrocarbons may be improved by demonstrating process optimisation within a validated risk manItem Open Access Risk assessments for quality-assured, source-segregated composts and anaerobic digestates for a circular bioeconomy in the UK(Elsevier, 2019-03-28) Longhurst, Philip J.; Tompkins, David; Pollard, Simon J. T.; Hough, Rupert L.; Chambers, Brian; Gale, Paul; Tyrrel, Sean; Villa, Raffaella; Taylor, Matthew; Wu, Shaomin; Sakrabani, Ruben; Litterick, Audrey; Snary, Emma; Leinster, Paul; Sweet, NinaA circular economy relies on demonstrating the quality and environmental safety of wastes that are recovered and reused as products. Policy-level risk assessments, using generalised exposure scenarios, and informed by stakeholder communities have been used to appraise the acceptability of necessary changes to legislation, allowing wastes to be valued, reused and marketed. Through an extensive risk assessment exercise, summarised in this paper, we explore the burden of proof required to offer safety assurance to consumer and brand-sensitive food sectors in light of attempts to declassify, as wastes, quality-assured, source-segregated compost and anaerobic digestate products in the United Kingdom. We report the residual microbiological and chemical risks estimated for both products in land application scenarios and discuss these in the context of an emerging UK bioeconomy worth £52bn per annum. Using plausible worst case assumptions, as demanded by the quality food sector, risk estimates and hazard quotients were estimated to be low or negligible. For example, the human health risk of E. coli 0157 illness from exposure to microbial residuals in quality-assured composts, through a ready-to-eat vegetable consumption exposure route, was estimated at ~10−8 per person per annum. For anaerobic digestion residues, 7 × 10−3 cases of E. coli 0157 were estimated per annum, a potential contribution of 0.0007% of total UK cases. Hazard quotients for potential chemical contaminants in both products were insufficient in magnitude to merit detailed quantitative risk assessments. Stakeholder engagement and expert review was also a substantive feature of this study. We conclude that quality-assured, source-segregated products applied to land, under UK quality protocols and waste processing standards, pose negligible risks to human, animal, environmental and crop receptors, providing that risk management controls set within the standards and protocols are adhered to.Item Open Access Weathered Hydrocarbon Wastes: A Risk Management Primer(Taylor & Francis, 2007-05-01T00:00:00Z) Brassington, Kirsty J.; Hough, Rupert L.; Paton, Graeme I.; Semple, Kirk T.; Risdon, Graeme C.; Crossley, Jane; Hay, I.; Askari, K.; Pollard, Simon J. T.We provide a primer and critical review of the characterization, risk assessment, and bioremediation of weathered hydrocarbons. Historically the remediation of soil contaminated with petroleum hydrocarbons has been expressed in terms of reductions in total petroleum hydrocarbon (TPH) load rather than reductions in risk. There are several techniques by which petroleum hydrocarbons in soils can be characterized. Method development is often driven by the objectives of published risk assessment frameworks. Some frameworks stipulate analysis of a wide range of petroleum hydrocarbons; for example, the United Kingdom (UK) approach suggests compounds from EC5 to EC70 be examined. Methods for the extraction of petroleum hydrocarbons from soil samples have been reviewed extensively in the open literature. Although various extraction and analytical methods are available for petroleum hydrocarbons, their results suffer from inter-method variation, with gas chromatography methods being used widely. Currently, the implications for risk assessment are uncertain. Bioremediation works well for remediating soils contaminated with petroleum hydrocarbons. As a result, the optimization of environmental conditions is imperative. For petroleum hydrocarbons in soil, international regulatory guidance on the management of risks from contaminated sites is now emerging. There is also growing support for the move toward compound-specific risk-based approaches for the assessment of hydrocarbon-contaminated land.