Browsing by Author "Huang, Haitao"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Open Access Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics(Wiley, 2015-04-11) Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Scott, James F.; Zeng, Xierong; Huang, HaitaoFerroelectrics/antiferroelectrics with high dielectric breakdown strength have the potential to store a great amount of electrical energy, attractive for many modern applications in electronic devices and systems. Here we demonstrate that a giant electric energy density (154 J×cm-3, 3 times the highest value of lead-based systems and 5 times the value of the best dielectric/ferroelectric polymer), together with the excellent fatigue-free property, good thermal stability and high efficiency, is realized in pulsed laser deposited (Bi1/2Na1/2)0.9118La0.02Ba0.0582(Ti0.97Zr0.03)O3 (BNLBTZ) epitaxial lead-free relaxor thin films with the coexistence of ferroelectric (FE) and antiferroelectric (AFE) phases. This is endowed by high epitaxial quality, great relaxor dispersion and the coexistence of the FE/AFE phases near the morphotropic phase boundary (MPB). The giant energy storage effect of the BNLBTZ lead-free relaxor thin films may make a great impact on the modern energy storage technology.Item Open Access High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases(Elsevier, 2015-06-16) Peng, Biaolin; Zhang, Qi; Li, Tieyu; Ke, Shanming; Ye, Mao; Wang, Yu; Niu, Hanben; Zeng, Xierong; Fan, Huiqing; Huang, HaitaoA relaxor ferroelectric Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3 (PNNZT) ceramic was reported, designed upon an idea that the composition is selected to near a tricritical point of tetragonal, rhombohedral and pseudocubic phases. High dielectric tunability of 67%, simultaneously with high electrostriction strain of 0.319% and high electrocaloric strength (ΔT/ΔE) of 32.5 mK cm/kV are achieved, which make it a promising multifunctional material for applications in dielectric tunable, precisely controlled and electric refrigeration devices. This is endowed by the low energy barrier among the transitions of phases and strong relaxor ferroelectric activities around the tricritical point. This work provides a guide for the design of multifunctional ferroelectric materials and can promote the development of other multifunctional ferroic materials.Item Open Access Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases(American Chemical Society, 2015-05-21) Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, HaitaoA highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm3 along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range (Graph Presented).Item Open Access Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film(Royal Society of Chemistry, 2019-05-02) Peng, Biaolin; Zhang, Qi; Gang, Bai; Leighton, Glenn J. T.; Shaw, Christopher; Milne, Steven J.; Zou, Bingsuo; Sun, Wenhong; Huang, Haitao; Wang, ZhonglinFerroelectric/antiferroelectric thin/thick films with large positive or negative electrocaloric (EC) effects could be very useful in designing commercial refrigeration devices. Here, a giant negative EC effect (maximum ΔT ∼ −42.5 K with ΔS ∼ −29.3 J K−1 kg−1) comparable to the best positive EC effects reported so far is demonstrated for 0.5(Ba0.8Ca0.2)TiO3–0.5Bi(Mg0.5Ti0.5)O3 (BCT–BMT) lead-free relaxor ferroelectric thin films prepared on Pt(111)/TiOx/SiO2/Si substrates using a sol–gel method. An electric-field induced structural phase transition (nanoscale tetragonal and orthorhombic to rhombohedral) along the out-of-plane [111] direction plays a very key role in developing the giant negative EC effect. This breakthrough will pave the way for practical applications of next-generation refrigeration devices with high cooling efficiency in one cycle by ingeniously utilizing and combining both the giant negative and positive EC effects. Moreover, a large energy density of 51.7 J cm−3 with a high power density of 1.15 × 1010 W kg−1 at room temperature is also achieved in the thin film, indicating that it is also an attractive multifunctional material for energy storage.Item Open Access Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range(Elsevier, 2018-03-08) Peng, Biaolin; Zhang, Qi; Lyu, Yinong; Liu, Laijun; Lou, Xiaojie; Shaw, Christopher; Huang, Haitao; Wang, ZhonglinFerroelectric/antiferroelectric thin/thick films with large electrocaloric (EC) effect in a broad operational temperature range are very attractive in solid-state cooling devices. We demonstrated that a large positive electrocaloric (EC) effect (maximum ΔT ~ 20.7 K) in a broad temperature range (~ 110 K) was realized in Pb0.97La0.02(Zr0.65Sn0.3Ti0.05)O3 (PLZST) relaxor antiferroelectric (AFE) thin film prepared using a sol-gel method. The large positive EC effect may be ascribed to the in-plane residual thermal tensile stress during the layer-by-layer annealing process, and the high-quality film structure owing to the utilization of the LaNiO3/Pt composite bottom electrode. The broad EC temperature range may be ascribed to the great dielectric relaxor dispersion around the dielectric peak because of the coexistence of nanoscale multiple FE and AFE phases. Moreover, a large pyroelectric energy density (6.10 Jcm−3) was harvested by using an Olsen cycle, which is much larger than those (usually less than 10− Jcm−3) obtained by using direct thermal-electrical, Stirling and Carnot cycles, etc. These breakthroughs enable the PLZST thin film an attractive multifunctional material for applications in modern solid-state cooling and energy harvesting.Item Open Access A universal strategy to prepare sulfur-containing polymer composites with desired morphologies for lithium−sulfur batteries(American Chemical Society, 2018-06-06) Zeng, Shao-Zhong; Zeng, Xierong; Tu, Wenxuan; Huang, Haitao; Yu, Liang; Yao, Yuechao; Jin, Nengzhi; Zhang, Qi; Zou, JizhaoLithium–sulfur (Li–S) batteries are probably the most promising candidates for the next-generation batteries owing to their high energy density. However, Li–S batteries face severe technical problems where the dissolution of intermediate polysulfides is the biggest problem because it leads to the degradation of the cathode and the lithium anode, and finally the fast capacity decay. Compared with the composites of elemental sulfur and other matrices, sulfur-containing polymers (SCPs) have strong chemical bonds to sulfur and therefore show low dissolution of polysulfides. Unfortunately, most SCPs have very low electron conductivity and their morphologies can hardly be controlled, which undoubtedly depress the battery performances of SCPs. To overcome these two weaknesses of SCPs, a new strategy was developed for preparing SCP composites with enhanced conductivity and desired morphologies. With this strategy, macroporous SCP composites were successfully prepared from hierarchical porous carbon. The composites displayed discharge/charge capacities up to 1218/1139, 949/922, and 796/785 mA h g–1 at the current rates of 5, 10, and 15 C, respectively. Considering the universality of this strategy and the numerous morphologies of carbon materials, this strategy opens many opportunities for making carbon/SCP composites with novel morphologies.