CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iceton, Gregg"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Data for the paper "From full-scale biofilters to bioreactors: engineering biological metaldehyde removal"
    (Cranfield University, 2019-07-17 11:45) Hassard, Francis; Jefferson, Bruce; Villa, Raffaella; Brookes, Adam; Choya, Andoni; Iceton, Gregg; Rolph, Catherine
    Datasets for Rolph, C.A., Villa, R., Jefferson, B., Brookes, A., Choya, A., Iceton, G. and Hassard, F., 2019. From full-scale biofilters to bioreactors: engineering biological metaldehyde removal. Science of the Total Environment, 685, pp.410-41.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    From full-scale biofilters to bioreactors: Engineering biological metaldehyde removal
    (Elsevier, 2019-05-21) Rolph, Catherine A.; Villa, Raffaella; Jefferson, Bruce; Brookes, Adam; Choya, Andoni; Iceton, Gregg; Hassard, Francis
    Polar, low molecular weight pesticides such as metaldehyde are challenging and costly to remove from drinking water using conventional treatment methods. Although biological treatments can be effective at treating micropollutants, through biodegradation and sorption processes, only some operational biofilters have shown the ability to remove metaldehyde. As sorption plays a minor role for such polar organic micropollutants, biodegradation is therefore likely to be the main removal pathway. In this work, the biodegradation of metaldehyde was monitored, and assessed, in an operational slow sand filter. Long-term data showed that metaldehyde degradation improved when inlet concentrations increased. A comparison of inactive and active sand batch reactors showed that metaldehyde removal happened mainly through biodegradation and that the removal rates were greater after the biofilm was acclimated through exposure to high metaldehyde concentrations. This suggested that metaldehyde removal was reliant on enrichment and that the process could be engineered to decrease treatment times (from days to hours). Through-flow experiments using fluidised bed reactors, showed the same behaviour following metaldehyde acclimation. A 40% increase in metaldehyde removal was observed in acclimated compared with non-acclimated columns. This increase was sustained for >40 days, achieving an average of 80% removal and compliance (<0.1 μ L−1) for >20 days. An initial microbial analysis of the acclimated and non-acclimated biofilm from the same filter materials, showed that the microbial community in acclimated sand was significantly different. This work presents a novel conceptual template for a faster, chemical free, low cost, biological treatment of metaldehyde and other polar pollutants in drinking water. In addition, this is the first study to report kinetics of metaldehyde degradation in an active microbial biofilm at a WTW.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback