Browsing by Author "Jakobsen, Mogens H."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Classification of colorimetric sensor data using time series(Society of Photo-Optical Instrumentation Engineers (SPIE), 2021-09-12) Francis, Deena P.; Laustsen, Milan; Babamoradi, Hamid; Mogensen, Jesper; Dossi, Eleftheria; Jakobsen, Mogens H.; Alstrøm, Tommy S.Colorimetric sensors are widely used as pH indicators, medical diagnostic devices and detection devices. The colorimetric sensor captures the color changes of a chromic chemical (dye) or array of chromic chemicals when exposed to a target substance (analyte). Sensing is typically carried out using the difference in dye color before and after exposure. This approach neglects the kinetic response, that is, the temporal evolution of the dye, which potentially contains additional information. We investigate the importance of the kinetic response by collecting a sequence of images over time. We applied end-to-end learning using three different convolution neural networks (CNN) and a recurrent network. We compared the performance to logistic regression, k-nearest-neighbor and random forest, where these methods only use the difference color from start to end as feature vector. We found that the CNNs were able to extract features from the kinetic response profiles that significantly improves the accuracy of the sensor. Thus, we conclude that the kinetic responses indeed improves the accuracy, which paves the way for new and better chemical sensors based on colorimetric responses.Item Open Access CRIM-TRACK: Sensor system for detection of criminal chemical substances(SPIE, 2015-10-21) Munk, Jens Kristian; Buus, Ole T.; Larsen, Jan; Dossi, Eleftheria; Tatlow, Sol; Lässig, Lina; Sandström, Lars; Jakobsen, Mogens H.Detection of illegal compounds requires a reliable, selective and sensitive detection device. The successful device features automated target acquisition, identification and signal processing. It is portable, fast, user friendly, sensitive, specific, and cost efficient. LEAs are in need of such technology. CRIM-TRACK is developing a sensing device based on these requirements. We engage highly skilled specialists from research institutions, industry, SMEs and LEAs and rely on a team of end users to benefit maximally from our prototypes. Currently we can detect minute quantities of drugs, explosives and precursors thereof in laboratory settings. Using colorimetric technology we have developed prototypes that employ disposable sensing chips. Ease of operation and intuitive sensor response are highly prioritized features that we implement as we gather data to feed into machine learning. With machine learning our ability to detect threat compounds amidst harmless substances improves. Different end users prefer their equipment optimized for their specific field. In an explosives-detecting scenario, the end user may prefer false positives over false negatives, while the opposite may be true in a drug-detecting scenario. Such decisions will be programmed to match user preference. Sensor output can be as detailed as the sensor allows. The user can be informed of the statistics behind the detection, identities of all detected substances, and quantities thereof. The response can also be simplified to “yes” vs. “no”. The technology under development in CRIM-TRACK will provide custom officers, police and other authorities with an effective tool to control trafficking of illegal drugs and drug precursors.Item Open Access Improved detection of chemical substances from colorimetric sensor data using probabilistic machine learning(SPIE, 2017-05) Mølgaard, Lasse L.; Buus, Ole T.; Larsen, Jan; Babamoradi, Hamid; Thygesen, Ida L.; Laustsen, Milan; Munk, Jens Kristian; Dossi, Eleftheria; O'Keeffe, Caroline; Lässig, Lina; Tatlow, Sol; Sandström, Lars; Jakobsen, Mogens H.We present a data-driven machine learning approach to detect drug- and explosives-precursors using colorimetric sensor technology for air-sampling. The sensing technology has been developed in the context of the CRIM-TRACK project. At present a fullyintegrated portable prototype for air sampling with disposable sensing chips and automated data acquisition has been developed. The prototype allows for fast, user-friendly sampling, which has made it possible to produce large datasets of colorimetric data for different target analytes in laboratory and simulated real-world application scenarios. To make use of the highly multi-variate data produced from the colorimetric chip a number of machine learning techniques are employed to provide reliable classification of target analytes from confounders found in the air streams. We demonstrate that a data-driven machine learning method using dimensionality reduction in combination with a probabilistic classifier makes it possible to produce informative features and a high detection rate of analytes. Furthermore, the probabilistic machine learning approach provides a means of automatically identifying unreliable measurements that could produce false predictions. The robustness of the colorimetric sensor has been evaluated in a series of experiments focusing on the amphetamine pre-cursor phenylacetone as well as the improvised explosives pre-cursor hydrogen peroxide. The analysis demonstrates that the system is able to detect analytes in clean air and mixed with substances that occur naturally in real-world sampling scenarios. The technology under development in CRIM-TRACK has the potential as an effective tool to control traf- ficking of illegal drugs, explosive detection, or in other law enforcement applications.Item Open Access Machine learning methods for the detection of explosives, drugs and precursor chemicals gathered using a colorimetric sniffer sensor(Royal Society of Chemistry, 2023-04-18) Francis, Deena P.; Laustsen, Milan; Dossi, Eleftheria; Treiberg, Tuule; Hardy, Iona; Shiv, Shai Hvid; Hansen, Bo Svarrer; Mogensen, Jesper; Jakobsen, Mogens H.; Alstrøm, Tommy S.Colorimetric sensing technology for the detection of explosives, drugs, and their precursor chemicals is an important and effective approach. In this work, we use various machine learning models to detect these substances from colorimetric sensing experiments conducted in controlled environments. The detection experiments based on the response of a colorimetric chip containing 26 chemo-responsive dyes indicate that homemade explosives (HMEs) such as hexamethylene triperoxide diamine (HMTD), triacetone triperoxide (TATP), and methyl ethyl ketone peroxide (MEKP) used in improvised explosives devices are detected with true positive rate (TPR) of 70–75%, 73–90% and 60–82% respectively. Time series classifiers such as Convolutional Neural Networks (CNN) are explored, and the results indicate that improvements can be achieved with the use of kinetics of the chemical responses. The use of CNNs is limited, however, to scenarios where a large number of measurements, typically in the range of a few hundred, of each analyte are available. Feature selection of important dyes using the Group Lasso (GPLASSO) algorithm indicated that certain dyes are more important in discrimination of an analyte from ambient air. This information could be used for optimizing the colorimetric sensor and extend the detection to more analytes.