CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jeyakumar, Rajesh Banu"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lignocellulose biohydrogen towards net zero emission: a review on recent developments
    (Elsevier, 2022-10-12) Laya, Chyi–How; Dharmaraja, Jeyaprakash; Shobana, Sutha; Arvindnarayan, Sundaram; Priya, Retnam Krishna; Jeyakumar, Rajesh Banu; Saratale, Rijuta Ganesh; Park, Young-Kwon; Kumar, Vinod; Kumar, Gopalakrishnan
    This review mainly determines novel and advance physical, chemical, physico–chemical, microbiological and nanotechnology–based pretreatment techniques in lignocellulosic biomass pretreatment for bio–H2 production. Further, aim of this review is to gain the knowledge on the lignocellulosic biomass pretreatment and its priority on the efficacy of bio–H2 and positive findings. The influence of various pretreatment techniques on the structure of lignocellulosic biomass have presented with the pros and cons, especially about the cellulose digestibility and the interference by generation of inhibitory compounds in the bio–enzymatic technique as such compounds is toxic. The result implies that the stepwise pretreatment technique only can ensure eventually the lignocellulosic biomass materials fermentation to yield bio–H2. Though, the mentioned pretreatment steps are still a challenge to procure cost–effective large–scale conversion of lignocellulosic biomass into fermentable sugars along with low inhibitory concentration.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Lignocellulosic biomass conversion via greener pretreatment methods towards biorefinery applications
    (Elsevier, 2022-11-28) Dharmaraja, Jeyaprakash; Shobana, Sutha; Arvindnarayan, Sundaram; Francis, Rusal Raj; Jeyakumar, Rajesh Banu; Saratale, Rijuta Ganesh; Ashokkumar, Veeramuthu; Bhatia, Shashi Kant; Kumar, Vinod; Kumar, Gopalakrishnan
    Lignocellulose biomass during pretreatment releases various compounds, among them the most important is reducing sugars, which can be utilized for the production of biofuels and some other products. Thereby, innovative greener pretreatment techniques for lignocellulosic materials have been considered to open a new door in the aspects of digestibility of the rigid carbohydrate–lignin matrix to reduce the particle size and remove hemicellulose/lignin contents to successfully yield valid bioproducts. This article reviews about the composition of lignocelluloses and emphasizes various green pretreatments viz novel green solvent–based IL and DES steam explosion, supercritical carbon dioxide explosion (Sc–CO2) and co–solvent enhanced lignocellulosic fractionation (CELF) along with suitable mechanistic pathway of LCB pretreatment process. Finally, this article concludes that the existing pretreatments should be redesigned to conquer the demands by large scale production and suggests combined pretreatment methods to carry out various biomass pre–processing.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Techno-economic analysis of 2,3-butanediol production from sugarcane bagasse
    (American Chemical Society, 2023-05-22) Gadkari, Siddharth; Narisetty, Vivek; Maity, Sunil K.; Manyar, Haresh; Mohanty, Kaustubha; Jeyakumar, Rajesh Banu; Pant, Kamal Kishore; Kumar, Vinod
    Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback