Browsing by Author "Jin, Bailu"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Federated learning of wireless network experience anomalies using consumer sentiment(IEEE, 2023-03-23) Guo, Weisi; Jin, Bailu; Sun, Schyler C.; Wu, Yue; Qi, Weijie; Zhang, JieIn wireless networks, consumer experience is important for both short monitoring of the Quality of Experience (QoE) as well as long term customer retainment. Current 4G and 5G networks are not equipped to measure QoE in an automated way, and experience is still reported through traditional customer care and drive-testing. In recent years, large-scale social media analytics has enabled researchers to gather statistically significant data on consumer experience and correlate them to major events such as social celebrations or significant network outages. However, the translational pathway from languages to topic-specific emotions (e.g., sentiment) to detecting anomalies in QoE is challenging. This challenge lies in two issues: (1) the social experience data remains sparsely distributed across space, and (2) anomalies in experience jump across sub-topic spaces (e.g., from data rate to signal strength). Here, we solved these two challenges by examining the spectral space of experience across topics using federated learning (FL) to identify anomalies. This can inform telecom operators to pay attention to potential network demand or supply issues in real time using relatively sparse and distributed data. We use real social media data curated for our telecommunication projects across London and the United Kingdom to demonstrate our results. FL was able to achieve 74-92% QoE anomaly detection accuracy, with the benefit of 30-45% reduce data transfer and preserving privacy better than raw data transfer.Item Open Access Quality-of-Trust in 6G: combining emotional and physical trust through explainable AI(IEEE, 2023-12-11) Li, Chen; Qi, Weijie; Jin, Bailu; Demestichas, Panagiotis; Tsagkaris, Kostas; Kritikou, Yiouli; Guo, WeisiWireless networks like many multi-user services have to balance limited resources in real-time. In 6G, increased network automation makes consumer trust crucial. Trust is reflect in both a personal emotional sentiment as well as a physical understanding of the transparency of AI decision making. Whilst there has been isolated studies of consumer sentiment to wireless services, this is not well linked to the decision making engineering. Likewise, limited recent research in explainable AI (XAI) has not established a link to consumer perception.Here, we develop a Quality-of-Trust (QoT) KPI that balances personal perception with the quality of decision explanation. That is to say, the QoT varies with both the time-varying sentiment of the consumer as well as the accuracy of XAI outcomes. We demonstrate this idea with an example in Neural Water-Filling (N-WF) power allocation, where the channel capacity is perceived by artificial consumers that communicate through Large Language Model (LLM) generated text feedback. Natural Language Processing (NLP) analysis of emotional feedback is combined with a physical understanding of N-WF decisions via meta-symbolic XAI. Combined they form the basis for QoT. Our results show that whilst the XAI interface can explain up to 98.9% of the neural network decisions, a small proportion of explanations can have large errors causing drops in QoT. These drops have immediate transient effects in the physical mistrust, but emotional perception of consumers are more persistent. As such, QoT tends to combine both instant physical mistrust and long-term emotional trends.Item Open Access Revealing the excitation causality between climate and political violence via a neural forward-intensity Poisson process(arXiv, 2022-07-29) Sun, Schyler C.; Jin, Bailu; Wei, Zhuangkun; Guo, WeisiThe causal mechanism between climate and political violence is fraught with complex mechanisms. Current quantitative causal models rely on one or more assumptions: (1) the climate drivers persistently generate conflict, (2) the causal mechanisms have a linear relationship with the conflict generation parameter, and/or (3) there is sufficient data to inform the prior distribution. Yet, we know conflict drivers often excite a social transformation process which leads to violence (e.g., drought forces agricultural producers to join urban militia), but further climate effects do not necessarily contribute to further violence. Therefore, not only is this bifurcation relationship highly non-linear, there is also often a lack of data to support prior assumptions for high resolution modeling. Here, we aim to overcome the aforementioned causal modeling challenges by proposing a neural forward-intensity Poisson process (NFIPP) model. The NFIPP is designed to capture the potential non-linear causal mechanism in climate induced political violence, whilst being robust to sparse and timing-uncertain data. Our results span 20 recent years and reveal an excitation-based causal link between extreme climate events and political violence across diverse countries. Our climate-induced conflict model results are cross-validated against qualitative climate vulnerability indices. Furthermore, we label historical events that either improve or reduce our predictability gain, demonstrating the importance of domain expertise in informing interpretation.