CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jupp, Ian"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    3D-printed coded apertures for x-ray backscatter radiography
    (SPIE, 2017-09-07) Munoz, Andre Arelius Marcus; Vella, Anna; Healy, M. J. F.; Lane, David W.; Jupp, Ian; Lockley, D.
    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Low open fraction coded masks for x-ray backscatter imaging
    (SPIE, 2018-09-24) Munoz, Andre Arelius Marcus; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David
    Previous research has indicated that coded masks with open fractions <0.5 are optimal for imaging some types of far-field scenes. The open fraction, in this case, refers to the ratio of open elements in the mask, with values <0.5 considered as low open fraction. Research is limited by the sparsity of <0.5 open fractions masks; thus a further 94 lower open fraction arrays are calculated and presented. These include the dilute uniformly redundant array and singer set, along with information on imaging potential, array sizes, and open fractions. Signal-to-noise ratio reveals the 0.5 open fraction modified uniformly redundant array to be the optimal coded mask for near-field x-ray backscatter imaging, over the lower open fraction singer set, dilute uniformly redundant and random array
  • Loading...
    Thumbnail Image
    ItemOpen Access
    X-ray backscatter radiography with lower open fraction coded masks
    (SPIE, 2017-08-10) Munoz, Andre Arelius Marcus; Vella, Anna; Healy, M. J. F.; Lane, David W.; Jupp, Ian; Lockley, D.
    Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback