CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kamarudin, Ramlee"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application
    (IEEE, 2019-02-01) Paracha, Kashif Nisar; Rahim, Sharul Kamal Abdul; Soh, Ping Jack; Kamarudin, Ramlee
    A planar, low-profile, dual-band and dual-polarized antenna on a semi-flex substrate is proposed in this paper. The antenna is fabricated on Rogers substrate with a thickness of 3.04 mm and sized at 70.4×76.14×3.11 mm3 (0.37λ0 ×0.40λ0 ×0.016λ0) only. The circular polarization property is enabled in the global navigation satellite system (GNSS) L1/E1 (lower) band by introducing a complementary split ring resonator on the antenna patch. Meanwhile, the antenna operates in the second (upper) 2.45 GHz WLAN band is enabled by etching a U-shaped slot on its ground plane. This simultaneous, dual-band and dual-polarized operation enables the proposed antenna to be applied in the indoor/outdoor wearable application. To isolate the antenna against the influence of the human body, a multiband artificial magnetic conductor (AMC) plane is added on the reverse side of the dual-band radiator. Comparison of the antenna without AMC in free space and when evaluated on the chest of a human body backed by AMC showed improved gain; from 3–5.1 dBi in the lower band, and from 1.53–5.03 dBi in the upper band. Besides that, the front-to-back ratio of the AMC backed monopole antenna also improved from 11–21.88 dB and from 2.5–24.5 dB in the GNSS and WLAN bands, respectively. Next, the specific absorption rate (SAR) of the monopole antenna with and without the AMC plane is assessed. Evaluation results indicate that the maximum SAR value decreased by up to 89.45 % in comparison with the antenna without AMC in the lower band. This indicates the effectiveness of the AMC array in increasing gain and FBR, besides reducing EM absorption in the human body.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mutual coupling reduction and pattern error correction in a 5G beamforming linear array using CSRR
    (IEEE, 2019-10-01) Selvaraju, R.; Jamaluddin, M. H.; Kamarudin, Ramlee
    A four-element printed antenna array operating at 25 GHz frequency with complementary split ring resonator. (CSRR) has been proposed for beamforming applications. The CSRR elements has been used to suppress the mutual coupling in the proposed array. The existence of the CSRR configuration in antenna array, controls the unnecessary surface current flow between the array elements, thus the mutual coupling between array elements has been significantly reduced up to -55 dB. The effect of mutual coupling on the array radiation patterns has been studied in the presence and absence of CSRRs. The effectiveness of CSRR has been studied by steering the main beam as well as the nulls in different angles. By implementing the CSRR elements in array antenna, the distorted array patterns have been recovered and are presented. The proposed antenna array with the CSRR has the advantage of easy and low-cost fabrication and it offers excellent coupling suppression without changing the antenna profile. The commercially available simulation tools such as Matlab and Ansys HFSS have been used for array weights calculation and antenna design respectively. Finally, the fabricated prototype has been experimentally verified, and it shows that the analytical and computed results agree well with the measured results.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback