CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kanda, Rakesh"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The formation of disinfection by-products from the chlorination and chloramination of amides
    (Elsevier, 2020-01-18) Sfynia, Chrysoula; Bond, Tom; Kanda, Rakesh; Templeton, Michael R.
    This study examined the potential of six aliphatic and aromatic amides, commonly found in natural waters or used as chemical aids in water treatment, to act as organic precursors for nine haloacetamides (HAcAms), five haloacetonitriles (HANs), regulated trihalomethanes (THMs) and haloacetic acids (HAAs) upon chlorination and chloramination. The impact of key experimental conditions, representative of drinking water, including pH (7 & 8), retention time (4 & 24 h) and bromide levels (0 & 100 μg/L), on the generation of the target DBPs was investigated. The highest aggregate DBP yields upon chlor(am)ination were reported for the aromatic and hydrophobic hydroxybenzamide; 2.7% ± 0.1% M/M (chlorination) and 1.7% M/M (chloramination). Increased reactivity was observed in aliphatic and hydrophilic compounds, acrylamide (2.5 ± 0.2% M/M) and acetamide (1.3 ± 0.2% M/M), in chlorination and chloramination, respectively. The addition of bromide increased average DBP yields by 50–70%. Relative to chlorination, the application of chloramines reduced DBP formation by 66.5% (without Br−) and by 46.4% (with Br−). However, bromine incorporation in HAAs and HAcAms was enhanced following chloramination, of concern due to the higher toxicological potency of brominated compounds.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback