Browsing by Author "Kapulla, Ralf"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Non-intrusive flow diagnostics for unsteady inlet flow distortion measurements in novel aircraft architectures(Elsevier, 2022-03-09) Doll, Ulrich; Migliorini, Matteo; Baikie, Joni; Zachos, Pavlos K.; Röhle, Ingo; Melnikov, Sergey; Steinbock, Jonas; Dues, Michael; Kapulla, Ralf; MacManus, David G.; Lawson, Nicholas J.Inlet flow distortion is expected to play a major role in future aircraft architectures where complex air induction systems are required to couple the engine with the airframe. The highly unsteady distortions generated by such intake systems can be detrimental to engine performance and were previously linked with loss of engine stability and potentially catastrophic consequences. During aircraft design, inlet flow distortion is typically evaluated at the aerodynamic interface plane, which is defined as a cross-flow plane located at a specific upstream distance from the engine fan. Industrial testing currently puts more emphasis on steady state distortions despite the fact that, historically, unsteady distortions were acknowledged as equally important. This was partially due to the limitations of intrusive measurement methods to deliver unsteady data of high spatial resolution in combination with their high cost and complexity. However, as the development of aircraft with fuselage-integrated engine concepts progresses, the combination of different types of flow distortions is expected to have a strong impact on the engine’s stability margin. Therefore, the need for novel measurement methods able to meet the anticipated demand for more comprehensive flow information is now more critical than ever. In reviewing the capabilities of various non-intrusive methods for inlet distortion measurements, Filtered Rayleigh Scattering (FRS) is found to have the highest potential for synchronously characterising multiple types of inlet flow distortions, since the method has the proven ability to simultaneously measure velocity, static pressure and temperature fields in challenging experimental environments. The attributes of the FRS method are further analysed aiming to deliver a roadmap for its application on ground-based and in-flight measurement environments.Item Open Access Seeding-free inlet flow distortion measurement by filtered Rayleigh scattering: diagnostic approach and verification(AIAA, 2023-01-19) Doll, Ulrich; Kapulla, Ralf; Steinbock, Jonas; Dues, Michael; Migliorini, Matteo; Zachos, Pavlos K.The expected close coupling between engine and fuselage of future aero-engine architectures will lead to highly distorted inflows at the engine face, presenting a major design risk for efficient and reliable engine operation. In particular, the increase in flow unsteadiness is perceived as a significant challenge. In this context, the Cranfield Complex Intake Test Facility (CCITF) is currently being installed at Cranfield University to reproduce the anticipated level of total pressure and swirl distortion arising from novel, closely coupled airframe-engine configurations. To address the expected demand for much more comprehensive flow field data, it is intended to establish the filtered Rayleigh scattering (FRS) technique for non-intrusive testing of aero-engine intake flows. Unlike the previously used particle image velocimetry (PIV) or Doppler global velocimetry (DGV), which are limited to the measurement of a single flow quantity, FRS can be used for the combined planar measurement of velocity and scalar fields without the need to add a flow tracer. In this study, an FRS concept with the ability to simultaneously measure high-accuracy time-averaged and time-resolved three-component velocity, static pressure and temperature fields is verified on a simplified mock-up of the CCITF facility. Time-averaged results show excellent agreement with benchmark laser Doppler anemometry (LDA) velocities, static pressure probe measurements and analytical temperature calculations. Moreover, it is shown that the developed concept can be used to determine multiple flow variables from a single-frequency measurement, opening the path towards time-resolved multi-parameter measurements by FRS.Item Open Access Towards time-resolved multi-property measurements by filtered Rayleigh scattering: diagnostic approach and verification(Springer, 2023-12-11) Doll, Ulrich; Kapulla, Ralf; Dues, Michael; Steinbock, Jonas; Melnikov, Sergey; Röhle, Ingo; Migliorini, Matteo; Zachos, Pavlos K.The use of multiple perspective views is a possible pathway towards the combined measurement of multiple time-resolved flow properties by filtered Rayleigh scattering (FRS). In this study, a six view observation concept is experimentally verified on a aspirated pipe flow. The concept was introduced in our previous work, and it has the ability to simultaneously measure high-accuracy time-averaged and time-resolved three-component velocity, pressure and temperature fields. To simulate time-resolution, multi-view FRS data at a single optimised excitation frequency are selected and processed for multiple flow properties. Time-averaged and quasi-time-resolved FRS results show very good agreement with differential pressure probe measurements and analytical temperature calculations and lie within ±2 m/s of complementary laser Doppler anemometry (LDA) velocity measurements for all operating points. The introduction of a multistage fitting procedure for the time-resolved analysis leads to a significant improvement of the precision by factors of 4 and 3 for temperature and axial velocity and 18 for pressure. Moreover, both processing methods show their capacity to resolve flow structures in a swirling flow configuration. It is demonstrated that the developed multi-view concept can be used to determine multiple flow variables from a singlefrequency measurement, opening the path towards time-resolved multi-parameter measurements by FRS.Item Open Access Towards time-resolved multi-property measurements by single-frequency FRS(International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, 2024-07-08) Doll, Ulrich; Kapulla, Ralf; Dues, Michael; Steinbock, Jonas; Melnikov, Sergey; Röhle, Ingo; Migliorini, Matteo; Zachos, Pavlos K.The filtered Rayleigh scattering technique (FRS), extended by the method of frequency scanning, has historically been limited to time-averaged multi-property flow measurements. In our recently published work, we present a concept that potentially enables the combined measurement of time-resolved pressure, temperature and three-component (3C) velocity fields. It is based on the observation of the region of interest from six perspectives and a single excitation frequency. This work summarizes and expands on a follow-up publication that experimentally verifies this concept on an aspirated circular duct flow. For this purpose, the results obtained from single-frequency data processing are compared with reference pressures, temperatures and corresponding LDA velocity measurements. Overall, a very good agreement is found for all operating points with accuracies of 3.4% in pressure, 1.3% in temperature and ±2 m/s in axial velocity. Concerning precision, a newly developed multistage evaluation procedure enables values for pressure, temperature and velocity as low as 3 hPa, 2.2 K and 1.7 m/s. In a second flow configuration, an axial swirler is introduced into the duct. The resulting secondary flow structure and deformation of the axial velocity field caused by swirler geometry and support are very well captured with the single-frequency analysis. A closing discussion on the implementation challenges of a single-frequency multi-property FRS instrument with pulsed laser radiation reveals significant obstacles to overcome. Due the considerable optimization potential identified, chances are high that true time-resolved multi-property measurements by FRS will become a reality.