Browsing by Author "Khanal, Bidur"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access CFD investigation of a core-mounted-target-type thrust reverser, Part 1: reverser stowed configuration(ASME, 2017-12-25) Mahmood, Tashfeen; Jackson, Anthony J. B.; Sethi, Vishal; Khanal, Bidur; Ali, FakhreDuring the second half of the 90's, NASA performed experimental investigations on six novel Thrust Reverser designs; Core Mounted Target Type Thrust Reverser (CMTTTR) design is one of them. To assess the CMTTTR efficiency and performance, NASA conducted several wind tunnel tests at Sea Level Static conditions. The results from these experiments are used in this paper series to validate the CFD results. This paper is part one of the three-part series; Part 1 and 2 discusses the CMTTTR in stowed and deployed configurations, all analysis in the first two papers are performed at SLS conditions. Part3 discusses the CMTTTR in the forward flight condition. The key objectives of this paper are: first, to perform the 3D CFD analysis of the reverser in stowed configuration; all analyses are performed at SLS condition. The second objective is to validate the acquired CFD results against the experimental data provided by NASA[1]. The third objective is to verify the fan and overall engine net thrust values acquired from the aforementioned CFD analyses against those derived based on 1-D engine performance simulations. The fourth and final objective is to examine and discuss the overall flow physics associated with the CMTTTR under stowed configuration. To support the successful implementation of the overall investigation, full-scale 3DCAD models are created, representing a fully integrated GE90 engine, B777 wing, and pylon configuration. Overall a good agreement is found between the CFD and test results; the difference between the two was less than 5%.Item Open Access CFD investigation of a core-mounted-target-type thrust reverser, Part 2: reverser deployed configuration(ASME, 2017-12-25) Mahmood, Tashfeen; Jackson, Anthony J. B.; Sethi, Vishal; Khanal, Bidur; Fakhre, AliCMTTTR design was proposed by NASA in the second half of the 90's. NASA carried out several experiments at static conditions, and their acquired results suggested that the performance characteristics of the CMTTTR design falls short to comply with the mandatory TR performance criteria, and were therefore regarded as an infeasible design. However, the authors of this paper believe that the results presented by NASA for CMTTTR design require further exploration to facilitate the complete understanding of its true performance potential. This Part2 paper is a continuation from Part1and presents a comprehensive three-dimensional (CFD) analyses of the CMTTTR in deployed configuration; the analyses at forward flight conditions will be covered in Part 3. The key objectives of this paper are: first, to validate the acquired CFD results with the experimental data provided by NASA: this is achieved by measuring the static pressure values on various surfaces of the deployed CMTTTR model. The second objective is to estimate the performance characteristics of the CMTTTR design and corroborate the results with experimental data. The third objective is to estimate the Pressure Thrust (i.e. axial thrust generated due to the pressure difference across various reverser surfaces) and discuss its significance for formulating the performance of any thrust reverser design. The fourth objective is to investigate the influence of kicker plate installation on overall TR performance. The fifth and final objective is to examine and discuss the overall flow physics associated with the thrust reverser under deployed configuration.Item Open Access Computational aeroacoustic study of a landing gear(2009-11-10T00:00:00Z) Khanal, Bidur; Knowles, Kevin; Saddington, Alistair J.; Obayashi, S.Computational study of a single wheel landing gear con guration was completed to understand the noise source and it's nature. The ow eld visualisation showed the present of large structural shedding in the wake side of the the landing gear wheel. These large structures were responsible for the low frequency noise. Spectral peaks at frequencies lower than 200 Hz were found to exist from the analysis of the frequency content of the pressure signals at far eld. These low frequency peaks were due to the large structural shedding.Item Open Access Computational investigation of cavity flow control using a passive device(Royal Aeronautical Society, 2012-12-31T00:00:00Z) Khanal, Bidur; Knowles, Kevin; Saddington, Alistair J.In this paper, the results of computational studies on the unsteady flow features in threedimensional empty cavities and cavities with a representative store are presented. Flow simulations with a turbulence model based on a hybrid method, which behaves as a standard Reynolds-averaged Navier-Stokes (RANS) model within the attached boundary layer and as a Large-Eddy Simulation LES Sub-Grid Scale model in the rest of the flow (commonly known as Detached-Eddy Simulation [DES]) are used in this study. The time-mean flow study showed the presence of three-dimensional effects inside the cavities. The mean flowfield visualisation also clearly showed the presence of a pair of 'tornado-like' vortices in the upstream half of the cavity which merge to a single, large recirculation further downstream. Visualisation for the cavity-with-store case revealed that the mean flowfield was effectively divided into two halves with signifiant reduction of the spanwise flow across the cavity width. In the unsteady flow study, near-field acoustic spectra were computed for the empty cavity and cavity-with-store cases. Study of unsteady pressure spectra for the cavitywith- store case found the presence of many peaks and the corresponding mode frequencies were found to agree well with the Rossiter modes. The blockage effect of store and strut on the spanwise flow is thought to have reduced the interaction, and subsequent non-linear coupling, between the Rossiter modes. This may be the reason for the co-existence of multiple modes without the coupling among them.Item Open Access Computational study of cavity flowfield at transonic speeds(2009-12-31T00:00:00Z) Khanal, Bidur; Knowles, Kevin; Saddington, Alistair J.In this paper, the results of a computational study on the unsteady flow features in three-dimensional empty cavities and a cavity with a store are presented. Flow simulations with a turbulence model based on a hybrid method, which behaves as a standard RANS model within the attached boundary layer and as a LES Sub-Grid Scale model in the rest of the flow, including the separated regions, are used in this study. The time-mean flow study showed the existence of spanwise flow in the 3D cavity. In the unsteady flow study, computed near- field acoustic spectra were for empty cavity as well as cavity-withstore cases. Unsteady results from an empty cavity case are compared with experimental data and the frequency of the dominant mode is in good agreement with the experiment. Study of unsteady pressure spectra for the cavity-with-store case found the presence of many peaks and the corresponding mode frequencies were found to agree well with the Rossiter modes. The mean flowfield visualisation for the cavity-with-store case clearly showed that the mean flowfield was effectively divided into two halves with signifiant reduction of the spanwise flow across the cavity width. This blockage effect of store and strut on the spanwise flow is thought to have reduced the interaction, and subsequent non-linear coupling between, the Rossiter modes. This may be the reason for the coexistence of multiple modes without the coupling among them.Item Open Access An efficiently parallelized high-order aeroacoustics solver using a characteristic-based multi-block interface treatment and optimized compact finite differencing(MDPI, 2017-05-28) Khanal, Bidur; Saddington, Alistair J.; Knowles, KevinThis paper presents the development of a fourth-order finite difference computational aeroacoustics solver. The solver works with a structured multi-block grid domain strategy, and it has been parallelized efficiently by using an interface treatment based on the method of characteristics. More importantly, it extends the characteristic boundary condition developments of previous researchers by introducing a characteristic-based treatment at the multi-block interfaces. In addition, most characteristic methods do not satisfy Pfaff’s condition, which is a requirement for any mathematical relation to be valid. A mathematically-consistent and valid method is used in this work to derive the characteristic interface conditions. Furthermore, a robust and efficient approach for the matching of turbulence quantities at the multi-block interfaces is developed. Finally, the implementation of grid metric relations to minimise grid-induced errors has been adopted. The code was validated against a number of benchmark cases, which demonstrated its accuracy and robustness across a range of problem typesItem Open Access Health and usage monitoring system for military vehicles(Cranfield University, 2019) Al Abri, M. S.; Hameed, Amer; Thirulogasingam, Thiru; Khanal, BidurThe aircraft industry has been able to adopt improved maintenance and logistics planning as a result of the technological advances in Integrated Modular Avionics (IMA) and Equipment Health Monitoring (EHM). Same cannot be said about the land system. In the land environment, military vehicles are well behind in achieving the same abilities and hence, the problem of inefficiency in the maintenance and logistics for land based system needs to be addressed. To address this and assess the viability of integrating HUMS and Autonomic Logistics on military land vehicles, this project was proposed. Three main contributions from this research which adds to the knowledge are: (1) assessment of some real system failure which could lead to a poor operational readiness, (2) evaluation of how HUMS can improve the availability and operational readiness and reduction in maintenance cost that leads to the development of cost model and (3) a use of case studies to evaluate degradation of systems under consideration and how their continuous monitoring can help reduce the maintenance cost. A cost modelling study presented a simple and effective method to analyse the financial implication of integrating HUMS system was proposed for military land vehicles. The model provides logical steps to estimate the yearly repair costs, operational availability and the overall costs to understand the financial implication of HUMS integration over the whole service life. The model was also used to assess the financial viability of integrating HUMS in other military platforms e.g. light armoured vehicle, Piranha and Main Battle Tank, Challenger 2. In both the cases, the analysis showed significant financial savings in the long term. A case study was conducted on two different military vehicles to identify the frequency of different systems and sub-systems failures. The 20 challenger 2 and 40 Piranha were studied over the period of 10 years of service time. Study has found that cooling-, lubrication- and the suspension- system were the mostly affected systems in those particular vehicles. An experimental protocol was developed to study the failure detection techniques for the suspension system. The frequency response function was used to identify the failure of the damper and hence the suspension system. The study has observed the changes in the resonance frequency of the failed suspension system with different excitation magnitudes. Effect of vibration waveform was observed to be negligible. However, the small changes in the resonance frequencies using different magnitudes of base excitation seems to suggest the excitation magnitude has the potential to identify the failure based on the frequency response function.Another experimental protocol was developed to examine the failure detection technique for the cooling system of the military vehicle. When the failure was introduced to the cooling system, the significant variations in the temperature were observed for all the engine running conditions at the lab as well as the test with the vehicle running in the field. The variations observed in the temperature measured in different locations in the cooling system could be used to diagnose an early stage of failure in the cooling system, and it can be used to take a preventive action before the actual failure occurs.Item Open Access A numerical investigation of the aerodynamic noise generation mechanism in transonic cavity flows(2011-09-08) Khanal, Bidur; Knowles, Kevin; Saddington, Alistair J.An overview of the progress of research work on the aerodyamics and aeroacoustics of three-dimensional cavities at transonic speeds is presented with special attention to identify the flow structures responsible for resonant tones. The cavity length to depth (L=D) ratio values were chosen to focus the investigations mainly in the open cavity flow regime. The cavity geometries considered also included the cavities with stores. In the first part of this project, a two-step computational solver which involves the solution of the Navier-Stokes equations in the first step, and an integral surface solution of the Ffowcs-Williams and Hawkings equation in the subsequent step, is developed especially for the accurate capturing of aeroacoustic phenomena. The solver developed is validated using a wide range of test cases and it also used to study an empty cavity unsteady flow problem at transonic speed. In addition, the solver was tested for its robustness by computing flow around an isolated landing gear. In the second part of the thesis, a general purpose CFD solver was used to tackle complex geometry problems which included cavities with missiles and spoilers. The flow field within the cavities investigated is shown to be dominated by highly unsteady periodic phenomena. The oscillation mechanism and the internal flow structures are found to remain largely unaected by the presence of stores, however, the spanwise variation on the flow is limited.Item Open Access Unsteady aerodynamics analysis and modelling of a Slingsby Firefly aircraft: Detached-Eddy Simulation model and flight test validation(Elsevier, 2020-09-07) Neves, A. F.; Lawson, Nicholas J.; Bennett, C. J.; Khanal, Bidur; Hoff, R. I.This paper presents unsteady stall characteristics of a Slingsby T67M260 Fire y light aircraft from both a computational uid dynamics (CFD) half model and ight tests. Initial results from the steady CFD, based on a RANS k . ! SST turbulence model, established the critical angle of attack of the stall to be stall = 16 , with a maximum lift coe cient of CLmax = 1.2. Comparisons with straight and level ight test data were comparable up to = 12 { 14 , with the increasing deviation at higher attributed to the e ect of the propeller slipstream under these ight conditions. The RANS CFD model was then extended to an unsteady Detached-Eddy Simulation (DES) model for three angles of attack at pre-stall and stall condition ( = 14 , 16 , 18 ), with analysis of the vortex shedding frequency. Further comparisons were then made with ight test data taken using on-board accelerometers and wing tuft surface ow visualization, at a stalled condition at equivalent . These unsteady CFD data established a dominant shedding frequency ranging from 11.7 Hz { 8.74 Hz with increasing and a Strouhal number based on wing chord of St = 0.11, which when compared to flight test accelerometer spectra matched within 2.9% of the measured frequency