Browsing by Author "Kibblewhite, Mark G."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Assessing the balance between greenhouse gases and ammonia emissions from Irish pastures amended with cattle slurry(Cranfield University, 2012-09-26) Bourdin, Frederic; Sakrabani, Ruben; Kibblewhite, Mark G.; Lanigan, GaryAgriculture in Ireland is the main source of ammonia (NH3) and contributes 30% of greenhouse gas emissions (GHG), with the majority of these emissions associated with livestock production. As a result, strategies promoting reductions in NH3 and GHG emissions are required. The aim of this work was: (i) to assess the impact of various NH3 abatement techniques on GHG release from a grassland soil; (ii) to investigate the consequences of organic nitrogen (N) applications in terms of carbon (C) sequestration in soils. The effects of slurry dry-matter content, application technique and timing of application were studied in a fifteen month field-plot experiment where gaseous emissions (CO2, N2O, CH4 and NH3) post-application were monitored. The natural abundance 13C tracer technique was also used to investigate the short-term dynamic of slurry-derived C and its consequences on soil CO2 efflux. Finally, 15N labelled slurries, supplemented or not with an additional C substrate, were used in a lysimeter study, under controlled conditions, to characterise the interactions between soil C and N processes post-organic fertilisation. Trailing-shoe application technique was shown to be and efficient way to lower NH3 volatilisation from land spread slurry. However, such benefice could be easily offset by an increase in direct N2O emissions and ecosystem respiration. Conversely, adjusting the timing of slurry spreading to get favourable soil and weather conditions, and to better meet herbage N requirements, had a positive effect on field N balance through a simultaneous reduction of both NH3 and N2O emissions. Emission factors (EF) calculated for slurry-induced N2O emissions were significantly lower than those calculated for mineral fertiliser and were greatly affected by weather and soil conditions. Such results support the widely spread idea of an inappropriate use of a single default EF value of 1% for both fertiliser types, under the IPCC Tier 1 methodology for national GHG inventories, and calls for the development of region-specific emission factors based on local soil types and climatic conditions.About 60% of slurry-derived C was shown to remain in the soil, even after 6 months, thus contributing to an increase of SOC pools. However, such incorporation of slurry-derived C may be offset by a positive priming effect of slurry on the degradation of the SOM. Such short-term priming of soil CO2 efflux may be, under certain conditions, compensated by a subsequent negative PE, thus minimising the impact of such phenomenon on the long-term sequestration of added slurry C. The long-term impact of these priming effects on nutrient and GHG balances remains to be further investigated, as these phenomena may occur on a regular basis in grassland ecosystems.Item Open Access Biochars in soils: towards the required level of scientific understanding(Taylor and Francis, 2016-12-14) Tammeorg, Priit; Bastos, Ana Catarina; Jeffery, Simon; Rees, Frédéric; Kern, Jurgen; Graber, Ellen R.; Ventura, Maurizio; Kibblewhite, Mark G.; Amaro, Antonio; Budai, Alice; Cordovil, Claudia M. D. S.; Domene, Xavier; Gardi, Ciro; Gascó, Gabriel; Horák, Ján; Kammann, Claudia; Kondrlova, Elena; Laird, David; Loureiro, Susana; Martins, Martinho A. S.; Panzacchi, Pietro; Prasad, Munoo; Prodana, Marija; Peregrina Puga, Aline; Ruysschaert, Greet; Sas-Paszt, Lidia; Silva, Flávio C.; Teixeira, Wenceslau Geraldes; Tonon, Giustino; Delle Vedove, Gemini; Zavalloni, Costanza Zavalloni; Glaser, Bruno; Verheijen, Frank G. A.Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar’s effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar’s contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Item Open Access The damaging effect of surface-traffic-generated soil pressures on buried archaeological artefacts(2010-04-12) Dain-Owens, Anne Peregrine; Kibblewhite, Mark G.; Godwin, R. J.; Hann, Michael J.The aim of this work was to investigate the influence of surface loading from conventional field operations on the damage to buried artefacts, both pots and bones. The objectives of this research were a) to investigate the influence of surface loading and resulting breakage relating to the material strengths of buried objects - ceramic (unglazed), and aged bone; b) to assess the magnitudes of peak subsurface pressures transferred through soil under the dynamic surface loading from tyres and other field operations; c) to develop and test an empirical model for predicting the effects of subsurface pressure application on buried objects from surface loads; and d) to explore ways of identifying the potential for damage to buried artefacts under agricultural and other field operations. Experimental investigations were performed in both the laboratory and field. The laboratory work was undertaken to determine the magnitude of subsurface pressure at which buried objects were damaged. Conducted in a sandy-loam-filled soil bin, instrumented ceramic and bone artefacts were buried alongside pressure sensors and subjected to loading by a single smooth tyre appropriately loaded and inflated for subsurface pressure generation. The breakage of the buried objects and the pressures under the moving tyre were recorded in order to allow correlation of the subsurface pressures to buried artefact breakage. The fieldwork was done to determine the magnitudes of subsurface pressure generated by individual field operations whilst travelling in a similar sandy loam field soil. Four plots were established, with each assigned a particular cultivation regime. An accelerated timeframe was utilized so that a years’ series of field operations could be driven over pressure sensors buried in the soil. The peak pressures from each field operation within each plot were recorded and summarized, and the data was analysed relative to field operation type and cultivation regime type. Multiple statistical analyses were performed, as the laboratory data and field data were independently evaluated before being correlated together. An empirical relationship between buried object damage and subsurface pressure magnitude was developed. The different pot types and bone orientations broke at different subsurface pressures. The four pot types listed in ascending order of strength to resist damage (with breakage pressure threshold value) are: shell tempered (1.3 bar), grog tempered (1.6 bar), flint tempered (3.1 bar), and sand tempered (3.6 bar). Aged human radius bones were tested, and the parallel bone orientation proved stronger than the perpendicular orientation, where 2.8 bar was the lowest subsurface pressure found to cause damage. The primary field operations, presented in ascending order relative to peak magnitude of subsurface pressure per specific operation, are: roll (0.68 bar), drill (1.03 bar), heavy duty cultivator (1.21 bar), spray 1 (1.27 bar), harvester (1.30 bar), spray 2 (1.31 bar), tractor / trailer (1.46 bar), shallow mouldboard plough (1.61 bar), deep mouldboard plough (2.04 bar). The relationships between vehicle specification and subsurface pressure generation potential were described, relating to the vehicle mass, tyre/track physical properties, and tyre inflation pressure. The effect of cultivation method on overall magnitude of subsurface pressure was defined, with lowest pressure generation within a zero-till cultivation regime (1.08 bar), higher in a non-inversion cultivation regime (1.13 bar), followed by the shallow inversion regime (1.22 bar), and highest within a conventional inversion scheme (1.30 bar). The laboratory and field results were correlated by a statistical analysis comparing breakage point to peak subsurface pressure. The shell tempered pot was found to be most susceptible to damage. The grog tempered pot was less vulnerable to damage, followed by the flint tempered pot. The quartz tempered pot was predicted to survive intact under all field operations within this research. In conclusion, this research has developed a functional and predictive empirical relationship between damage to pot and aged bone artefacts from subsurface soil pressures generated by surface traffic. It has been found that different types of buried pot and bone artefacts break at different subsurface pressures. In addition, a complete dataset consisting of peak subsurface pressures recorded under a year’s range of field operations within a sandy loam soil at field-working moisture content has been compiled. The effect of different cultivation methods on the generation of subsurface pressures was also evaluated. The breakage thresholds specific to each artefact type have been related to the in-field subsurface soil pressures. A correlation of breakage to the subsurface pressures under each operation yields a prediction of percentage of artefact-type breakage. From this correlation, relationships are observed between vehicle specification, subsurface pressure generation, and consequential artefact breakage. The achievements provide knowledge about how field operations affect specific types of buried archaeology, providing a valuable asset to farmers, land managers, and regulatory bodies. It is evident that agricultural practices, choice of track or tyre type, and inflation pressures must be carefully managed if the intention is to protect or mitigate damage to buried archaeological artefacts. Thus, a contribution has been made to the development of ‘best management practices’ and to the specification and use of field operations relative to intended mitigation of buried artefact damage.Item Open Access Indicators of soil quality - Physical properties (SP1611). Final report to Defra(Defra, 2012-09-30) Rickson, R. Jane; Deeks, Lynda K.; Corstanje, Ronald; Newell-Price, Paul; Kibblewhite, Mark G.; Chambers, B.; Bellamy, Patricia; Holman, Ian P.; James, I. T.; Jones, Robert; Kechavarsi, C.; Mouazen, Abdul; Ritz, K.; Waine, TobyThe condition of soil determines its ability to carry out diverse and essential functions that support human health and wellbeing. These functions (or ecosystem goods and services) include producing food, storing water, carbon and nutrients, protecting our buried cultural heritage and providing a habitat for flora and fauna. Therefore, it is important to know the condition or quality of soil and how this changes over space and time in response to natural factors (such as changing weather patterns) or to land management practices. Meaningful soil quality indicators (SQIs), based on physical, biological or chemical soil properties are needed for the successful implementation of a soil monitoring programme in England and Wales. Soil monitoring can provide decision makers with important data to target, implement and evaluate policies aimed at safeguarding UK soil resources. Indeed, the absence of agreed and well-defined SQIs is likely to be a barrier to the development of soil protection policy and its subsequent implementation. This project assessed whether physical soil properties can be used to indicate the quality of soil in terms of its capacity to deliver ecosystem goods and services. The 22 direct (e.g. bulk density) and 4 indirect (e.g. catchment hydrograph) physical SQIs defined by Loveland and Thompson (2002) and subsequently evaluated by Merrington et al. (2006), were re-visited in the light of new scientific evidence, recent policy drivers and developments in sampling techniques and monitoring methodologies (Work Package 1). The culmination of these efforts resulted in 38 direct and 4 indirect soil physical properties being identified as potential SQIs. Based on the gathered evidence, a ‘logical sieve’ was used to assess the relative strengths, weaknesses and suitability of each potential physical SQI for national scale soil monitoring. Each soil physical property was scored in terms of: soil function – does the candidate SQI reflect all soil function(s)? land use - does the candidate SQI apply to all land uses found nationally? soil degradation - can the candidate SQI express soil degradation processes? does the candidate SQI meet the challenge criteria used by Merrington et al. (2006)?This approach enabled a consistent synthesis of available information and the semi-objective, semi-quantitative and transparent assessment of indicators against a series of scientific and technical criteria (Ritz et al., 2009; Black et al., 2008). The logical sieve was shown to be a flexible decision-support tool to assist a range of stakeholders with different agenda in formulating a prioritised list of potential physical SQIs. This was explored further by members of the soil science and soils policy community at a project workshop. By emphasising the current key policy-related soil functions (i.e. provisioning and regulating), the logical sieve was used to generate scores which were then ranked to identify the most qualified SQIs. The process selected 18 candidate physical SQIs. This list was further filtered to move from the ‘narrative’ to a more ‘numerical’ approach, in order to test the robustness of the candidate SQIs through statistical analysis and modelling (Work Package 2). The remaining 7 physical SQIs were: depth of soil; soil water retention characteristics; packing density; visual soil assessment / evaluation; rate of erosion; sealing; and aggregate stability. For these SQIs to be included in a robust national soil monitoring programme, we investigated the uncertainty in their measurement; the spatial and temporal variability in the indicator as given by observed distributions; and the expected rate of change in the indicator. Whilst a baseline is needed (i.e. the current state of soil), it is the rate of change in soil properties and the implications of that change in terms of soil processes and functioning that are key to effective soil monitoring. Where empirical evidence was available, power analysis was used to understand the variability of indicators as given by the observed distributions. This process determines the ability to detect a particular change in the SQI at a particular confidence level, given the ‘noise’ or variability in the data (i.e. a particular power to detect a change of ‘X’ at a confidence level of ‘Y%’ would require ‘N’ samples). However, the evidence base for analysing the candidate SQIs is poor: data are limited in spatial and temporal extent for England and Wales, in terms of a) the degree (magnitude) of change in the SQI which significantly affects soil processes and functions (i.e. ‘meaningful change’), and b) the change in the SQI that is detectable (i.e. what sample size is needed to detect the meaningful signal from the variability or noise in the signal). This constrains the design and implementation of a scientifically and statistically rigorous and reliable soil monitoring programme. Evidence that is available suggests that what constitutes meaningful change will depend on soil type, current soil state, land use and the soil function under consideration. However, when we tested this by analysing detectable changes in packing density and soil depth (because data were available for these SQIs) over different land covers and soil types, no relationships were found. Schipper and Sparling (2000) identify the challenge: “a standardised methodology may not be appropriate to apply across contrasting soils and land uses. However, it is not practical to optimise sampling and analytical techniques for each soil and land use for extensive sampling on a national scale”. Despite the paucity in data, all seven SQIs have direct relevance to current and likely future soil and environmental policy, because they can be related (qualitatively) to soil processes, soil functions and delivery of ecosystem goods and services. Even so, meaningful and detectable changes in physical SQIs may be out of time with any soil policy change and it is not usually possible to link particular changes in SQIs to particular policy activities. This presents challenges in ascertaining trends that can feed into policy development or be used to gauge the effectiveness of soil protection policies (Work Package 3). Of the seven candidate physical SQIs identified, soil depth and surface sealing are regarded by many as indicators of soil quantity rather than quality. Visual soil evaluation is currently not suited to soil monitoring in the strictest sense, as its semi-qualitative basis cannot be analysed statistically. Also, few data exist on how visual evaluation scores relate to soil functions. However, some studies have begun to investigate how VSE might be moved to a more quantified scale and the method has some potential as a low cost field technique to assess soil condition. Packing density requires data on bulk density and clay content, both of which are highly variable, so compounding the error term associated with this physical SQI. More evidence is needed to show how ‘meaningful’ change in aggregate stability affects soil processes and thus soil functions (for example, using the limited data available, an equivocal relationship was found with water regulation / runoff generation). The analysis of available data has given promising results regarding the prediction of soil water retention characteristics and packing density from relatively easy to measure soil properties (bulk density, texture and organic C) using pedotransfer functions. Expanding the evidence base is possible with the development of rapid, cost-effective techniques such as NIR sensors to measure soil properties. Defra project SP1303 (Brazier et al., 2012) used power analyses to estimate the number of monitoring locations required to detect a statistically significant change in soil erosion rate on cultivated land. However, what constitutes a meaningful change in erosion rates still requires data on the impacts of erosion on soil functions. Priority cannot be given amongst the seven SQIs, because the evidence base for each varies in its robustness and extent. Lack of data (including uncertainty in measurement and variability in observed distributions) applies to individual SQIs; attempts at integrating more than one SQI (including physical, biological and chemical SQIs) to improve associations between soil properties and processes / functions are only likely to propagate errors. Whether existing monitoring programmes can be adapted to incorporate additional measurement of physical SQIs was explored. We considered options where one or more of the candidate physical SQIs might be implemented into soil monitoring programmes (e.g. as a new national monitoring scheme; as part of the Countryside Survey; and as part of the National Soil Inventory). The challenge is to decide whether carrying out soil monitoring that is not statistically robust is still valuable in answering questions regarding current and future soil quality. The relationship between physical (and other) SQIs, soil processes and soil functions is complex, as is how this influences ecosystem services’ delivery. Important gaps remain in even the realisation of a conceptual model for these inter-relationships, let alone their quantification. There is also a question of whether individual quantitative SQIs can be related to ecosystem services, given the number of variables.Item Open Access On-farm benefits from soil organic matter in England and Wales(Cranfield University, 2005) Verheijen, Frank G. A.; Kibblewhite, Mark G.; Loveland, P. J. L.Soil organic carbon (SOC) is increasingly recognised as an important component in the global carbon cycle and as a potential C sequestration pool for mitigation of the enhanced greenhouse effect. Recent appeals have prompted research into the potential of storing C in arable fields and the concomitant impact for on-farm economics. This project was instigated to answer the question “Does soil organic matter (SOM), or its management, provide arable on-farm benefit, in England and Wales?”. A methodological design was developed which integrates social science with soil science. From the National Soil inventory (NSI) database, attainable SOC ranges were estimated for different SOC physiotopes, i.e. landscape units for which the environmental factors governing SOC contents are similar. Significant differences were found, e.g for a dry-sandy physiotope and a wet-clayey physiotope, the ranges were estimated at 0.5-1.6% and 2.0-5.4% SOC (w/w), respectively. A list of qualified ‘SOM benefit’ indicators was developed using an iterative process involving the scientific literature and interviews with ‘expert farmers’. Perceptions of the indicators were investigated within a stratified random sample of commercial farmers. On balance, farmers perceived that benefits of SOM outweighed the disbenefits (i.e. lodging, weeds, and slugs). N fertiliser reduction, increased yield quantity, and enhanced ease of tillage were recognised as the most valuable benefits. However, the values were low to moderate, and perceived to be influenced substantially by physiotope, crop type, and SOM management type. Farmers’ perceptions and valuations were investigated for 101 fields on commercial farms, selected from the NSI database to represent the attainable SOC content ranges. No correlations were found between SOC and any performance indicator. The full range of reported performances was found for fields with similar SOC contents. This implied that SOC contents and SOM management may have little importance to on-farm economics when compared to the quality of overall farm management. These results expose the marginal extent of on-farm benefits from increased SOC contents and SOM management. Implications for future research and policy are discussed.Item Open Access Soil-based services in the built environment: A report prepared for the Department of Environment, Food and Rural Affairs(Cranfield University, National Soil Resources Institute, 2005-05) Wood, Gavin; Kibblewhite, Mark G.; Hannam, Jacqueline A.; Harris, Jim A.; Leeds-Harrison, Peter B.Background: Publication of the First Soil Action Plan for England in 2004 has drawn attention to the value that can be derived from the protection and appropriate management of the country’s soil resources. This principle applies all soils equally including those in built environments which are the subject of this report. Soil is valuable because it underpins both quality of life and biodiversity conservation. It does this by providing a range of services or functions which meet human needs and sustain natural systems. The principal of these are environmental regulation and environmental maintenance, food and fibre production, above and below ground habitat maintenance as support for biodiversity, protection of cultural services and provision of a platform for the built environment. Soil is, in practical terms, a non-renewable resource which can be destroyed by construction. To help protect soils in the built environment, the services they can and do provide to both society and the environment need to be documented and explained. This report proposes a framework to help explain soil’s services and functions within built environments and provides a literature-based review of those services, their current perceived value, and a risk assessment of the threats that may degrade them.Item Open Access Will European soil-monitoring networks be able to detect changes in topsoil organic carbon content?(Blackwell Publishing Ltd, 2008-10-31T00:00:00Z) Saby, N. P. A.; Bellamy, Patricia H.; Morvan, X.; Arrouays, D.; Jones, Robert J. A.; Verheijen, Frank G. A.; Kibblewhite, Mark G.; Verdoodt, A.; Üveges, J.; Freudenschuß, A.; Simota, C.Within the United Nations Framework Convention on Climate Change, articles 3.3 and 3.4 stipulate that some voluntary activities leading to an additional carbon (C) sequestration in soils could be accounted as C sinks in national greenhouse gas inventories. These additional C stocks should be verifiable. In this work, we assess the feasibility of verifying the effects of changes in land use or management practice on soil organic carbon (SOC), by comparing minimum detectable changes in SOC concentration for existing European networks suitable for soil monitoring. Among the tested scenarios, the minimum detectable changes differed considerably among the soil-monitoring networks (SMNs). Considerable effort would be necessary for some member states to reach acceptable levels of minimum detectable change for C sequestration accounting. For SOC, a time interval of about 10 years would enable the detection of some simulated large changes in most European countries. In almost all cases, the minimum detectable change in SOC stocks remains greater than annual greenhouse gases emissions. Therefore, it is unlikely that SMNs could be used for annual national C accounting. However, the importance of organic C in soil functions, and as an indicator of soil condition and trends, underlines the importance of establishing effective national SMNs.