Browsing by Author "Kommedal, Roald"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Starch degradation and intermediate dynamics in flocculated and dispersed microcosms(IWA Publishing, 2017-08-16) Ravndal, Kristin T.; Kommedal, RoaldA large fraction of the organic substrate in municipal wastewater is particulate. Prior to uptake, particles have to be degraded through potentially a range of intermediates. However, research on intermediate dynamics during particle hydrolysis is limited. In this paper, batch experiments on flocculated and dispersed biomass microcosms using starch as particulate substrate are reported. Overall hydrolysis rate was not significantly different between the two systems. Particle colonization, and increased particle porosity in combination with particle breakup, led to increased substrate availability over time. Particle breakup was more important for flocculated biomass, while increased particle porosity and particle colonization played a larger role for dispersed biomass. During particle degradation intermediates were formed; however, all intermediate polymer sizes were not formed to the same extent. This can be explained by non-random enzymatic degradation, where some products are preferred over others. Intermediates' dynamics also depend on the biomass structure, and in a floc-based system, diffusion limitations allow glucose to accumulate in the system.Item Open Access Wastewater characterisation by combining size fractionation, chemical composition and biodegradability(Elsevier, 2017-12-18) Ravndal, Kristin T.; Opsahl, Eystein; Bagi, Andrea; Kommedal, RoaldThe potential for resource recovery from wastewater can be evaluated based on a detailed characterisation of wastewater. In this paper, results from fractionation and characterisation of two distinct wastewaters are reported. Using tangential flow filtration, the wastewater was fractionated into 10 size fractions ranging from 1 kDa to 1 mm, wherein the chemical composition and biodegradability were determined. Carbohydrates were dominant in particulate size fractions larger than 100 μm, indicating a potential of cellulose recovery from these fractions. While the particulate size fractions between 0.65 and 100 μm show a potential as a source for biofuel production due to an abundance of saturated C16 and C18 lipids. Both wastewaters were dominated by particulate (>0.65 μm), and oligo- and monomeric (<1 kDa) COD. Polymeric (1–1000 kDa) and colloidal (1000 kDa-0.65 μm) fractions had a low COD content, expected due to degradation in the sewer system upstream of the wastewater treatment plant. Biodegradation rates of particulate fractions increase with decreasing size. However, this was not seen in polymeric fractions where degradation rate was governed by chemical composition. Analytical validation of molecular weight and particle size distribution showed below filter cut-off retention of particles and polymers close to nominal cut-off, shifting the actual size distribution.