Browsing by Author "Kumar, Manish"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Energy feasibility and life cycle assessment of sludge pretreatment methods for advanced anaerobic digestion(Elsevier, 2022-05-26) Balasundaram, Gowtham; Vidyarthi, Praveen Kumar; Gahlot, Pallavi; Arora, Pratham; Kumar, Vinod; Kumar, Manish; Kazmi, A. A.; Tyagi, Vinay KumarEnergy sustainability is one of the critical parameters to be studied for the successful application of pretreatment processes. This study critically analyzes the energy efficiency of different energy-demanding sludge pretreatment techniques. Conventional thermal pretreatment of sludge (∼5% total solids, TS) produced 244 mL CH4/gTS, which could result in a positive energy balance of 2.6 kJ/kg TS. However, microwave pretreatment could generate only 178 mL CH4/gTS with a negative energy balance of −15.62 kJ/kg TS. In CAMBI process, the heat requirements can be compensated using exhaust gases and hot water from combined heat and power, and electricity requirements are managed by the use of cogeneration. The study concluded that <100 ℃ pretreatment effectively enhances the efficiency of anaerobic digestion and shows positive energy balance over microwave and ultrasonication. Moreover, microwave pretreatment has the highest global warming potential than thermal and ultrasonic pretreatments.Item Open Access Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks(Elsevier, 2023-06-01) Kumar, Manish; Bolan, Shiv; Padhye, Lokesh P.; Konarova, Muxina; Foong, Shin Ying; Lam, Su Shiung; Wagland, Stuart T.; Cao, Runzi; Li, Yang; Batalha, Nuno; Ahmed, Mohamed; Pandey, Ashok; Siddique, Kadambot H.M.; Wang, Hailong; Rinklebe, Jörg; Bolan, NanthiPlastic production and its unplanned management and disposal, has been shown to pollute terrestrial, aquatic, and atmospheric environments. Petroleum-derived plastics do not decompose and tend to persist in the surrounding environment for longer time. Plastics can be ingested and accumulate into the tissues of both terrestrial and aquatic animals, which can impede their growth and development. Petrochemicals are the primary feedstocks for the manufacture of plastics. The plastic wastes can be retrieved back for conversion to value added petrochemicals including aromatic char, hydrogen, synthesis gas, and bio-crude oil using various technologies including thermochemical, catalytic conversion and chemolysis. This review focusses on technologies, opportunities, challenges and outlooks of retrieving back plastic wastes for conversion to value added petrochemicals. The review also explores both the technical and management approaches for conversion of plastic wastes to petrochemicals in regard to commercial feasibility, and economic and environmental sustainability. Further, this review work provides a detailed discussion on opportunities and challenges associated with recent thermochemical and catalytic conversion technologies adopted for retrieving plastic waste to fuels and chemicals. The review also recommends prospects for future research to improve the processes and cost-efficiency of promising technologies for conversion of plastic wastes to petrochemicals. It is envisioned that this review would overcomes the knowledge gaps on conversion technologies and further contribute in emerging sustainable approaches for exploiting plastic wastes for value-added products.