Browsing by Author "Laporte, Gilbert"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Operational research: methods and applications(Taylor & Francis, 2023-12-27) Petropoulos, Fotios; Laporte, Gilbert; Aktas, EmelThroughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes.Item Open Access Strategic flood impact mitigation in developing countries’ urban road networks: application to Hanoi(Elsevier, 2024-12-16) Phouratsamay, Siao-Leu; Scaparra, Maria Paola; Tran, Trung Hieu; Laporte, GilbertDue to climate change, the frequency and scale of flood events worldwide are increasing dramatically. Flood impacts are especially acute in developing countries, where they often revert years of progress in sustainable development and poverty reduction. This paper introduces an optimization-based decision support tool for selecting cost-efficient flood mitigation investments in developing countries’ urban areas. The core of the tool is a scenario-based, multi-period, bi-objective Mixed Integer Linear Programming model which minimizes infrastructure damage and traffic congestion in urban road networks. The tool was developed in collaboration with Vietnamese stakeholders (e.g., local communities and government authorities), and integrates data and inputs from other disciplines, including social science, transport economics, climatology and hydrology. A metaheuristic, combining a Greedy Randomized Adaptive Search Procedure with a Variable Neighborhood Descent algorithm, is developed to solve large scale problem instances. An extensive computational campaign on randomly generated instances demonstrates the efficiency of the metaheuristic in solving realistic problems with hundreds of interdependent flood mitigation interventions. Finally, the applicability of the interdisciplinary approach is demonstrated on a real case study to generate a 20-year plan of mitigation investments for the urban area of Hanoi. Policy implications and impacts of the study are also discussed.