CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Larriba, Marcos"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Machine learning screening tools for the prediction of extraction yields of pharmaceutical compounds from wastewaters
    (Elsevier, 2024-04-30) Casas, Ana; Rodríguez-Llorente, Diego; Rodríguez-Llorente, Guillermo; García, Juan; Larriba, Marcos
    Pharmaceutical compounds have become an increasingly important source of pollutants in wastewaters being conventional treatments ineffective in removing them, so they are commonly discharged into the environment. Pharmaceuticals can be successfully removed using liquid-liquid extraction, and COSMO-RS can be used to predict interactions and identify the most promising solvents. However, COSMOtherm models cannot account for key process parameters, which reduces the accuracy of these computational models. Therefore, there is a need for alternative computational approaches to accurately predict the extraction yields of pharmaceuticals which can incorporate both processing and interaction variables. This work used machine learning to predict the extraction yield of eleven pharmaceuticals using eight solvents. Six regression models and two classification models were explored. The best performance was obtained with ANN regressor (test MAE: 4.510, test R2: 0.884) and RF classifier (test accuracy: 0.938, test recall: 0.974). The RF regression analysis and classification also showed key extraction yield features: solvent-to-feed ratio, n–octanol–water partition coefficient, hydrogen bond and Van der Waals contributions to excess enthalpy, and pH distance to nearest pKa. Machine learning showed as an excellent tool for screening and selecting the most promising solvents and process conditions to remove pharmaceuticals from wastewater.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback