Browsing by Author "Lawson, C. P."
Now showing 1 - 19 of 19
Results Per Page
Sort Options
Item Open Access Actuation system design with electrically powered actuators(Cranfield University, 2011-01) Meng, Fanliang; Lawson, C. P.This project addresses the actuation system architecture of future All-electric aircraft (AEA) with electrically powered actuators (EPA). Firstly, the information of EPAs is reviewed, and then an electro-hydrostatic actuator (EHA) and electro-mechanical actuator (EMA) are selected for further system research. The actuation system architecture of Boeing and Airbus is then presented as a conventional design where the new design concepts are also researched and the distributed architecture was proposed as another design trend. To find out which one is better, both of them are selected for further research. The easily available data makes the Flying Crane a better choice for the case study. Stall load, maximum rate and power are the main elements for electric actuator requirements and power consumption, weight, cost and safety are the most important aspects for civil aircraft actuation systems. The conventional and distributed flight actuation system design considered the redundancy of systems and actuators, and also the relationship of the power, control channel and actuator work mode. But only primary flight actuation control system specifications are calculated since this data has better precision and also the limited time has to be taken into consideration. Brief comparisons of the two system specifications demonstrate that the higher power actuator have has higher efficiency and distributed actuators could reduce the system weight through reduce the system redundancy with a power efficiency decline. The electrically powered actuation system for future aircraft design is a balance between actuator number, system weight and power consumption.Item Open Access Actuation technology for flight control system on civil aircraft(Cranfield University, 2009-01) Xue, L; Lawson, C. P.; Fielding, JohnThis report addresses the author’s Group Design Project (GDP) and Individual Research Project (IRP). The IRP is discussed primarily herein, presenting the actuation technology for the Flight Control System (FCS) on civil aircraft. Actuation technology is one of the key technologies for next generation More Electric Aircraft (MEA) and All Electric Aircraft (AEA); it is also an important input for the preliminary design of the Flying Crane, the aircraft designed in the author’s GDP. Information regarding actuation technologies is investigated firstly. After initial comparison and engineering consideration, Electrohydrostatic Actuation (EHA) and variable area actuation are selected for further research. The tail unit of the Flying Crane is selected as the case study flight control surfaces and is analysed for the requirements. Based on these requirements, an EHA system and a variable area actuation system powered by localised hydraulic systems are designed and sized in terms of power, mass and Thermal Management System (TMS), and thereafter the reliability of each system is estimated and the safety is analysed. These two systems are then compared in fuel penalty, safety, maintenance and installation, cost, risk and certification. A conventional Fly-By-Wire (FBW) actuation system is used as the reference case. The results show that both the EHA system and the variable area actuation system are feasible for the FCS on civil aircraft. The EHA system is proved to be quite efficient in power consumption and mass reduction. However, the reliability of EHA needs to be improved and the TMS of this system may lead to an increase in aircraft drag. The variable area actuation system demonstrates that it can significantly reduce the system design point and system size; while the localised hydraulic system is not as efficient as a centralised hydraulic system. Finally, a variable area actuation system powered by the centralised hydraulic systems is suggested for the FCS on civil aircraft and the Flying Crane. A variable area actuation system powered by localised hydraulic systems is recommended as the first step towards MEA and AEA in the future.Item Open Access Aircraft electrical power system diagnostics, prognostics and health management(Cranfield University, 2009) Tai, Zhongtian; Lawson, C. P.In recent years, the loads needing electrical power in military aircraft and civil jet keep increasing, this put huge pressure on the electrical power system (EPS). As EPS becomes more powerful and complex, its reliability and maintenance becomes difficult problems to designers, manufacturers and customers. To improve the mission reliability and reduce life cycle cost, the EPS needs health management. This thesis developed a set of generic health management methods for the EPS, which can monitor system status; diagnose faults/failures in component level correctly and predict impending faults/failures exactly and predict remaining useful life of critical components precisely. The writer compared a few diagnostic and prognostic approaches in detail, and then found suitable ones for EPS. Then the major components and key parameters needed to be monitored are obtained, after function hazard analysis and failure modes effects analysis of EPS. A diagnostic process is applied to EPS using Dynamic Case-based Reasoning approach, whilst hybrid prognostic methods are suggested to the system. After that, Diagnostic, Prognostic and Health Management architecture of EPS is built up in system level based on diagnostic and prognostic process. Finally, qualitative evaluations of DPHM explain given. This research is an extension of group design project (GDP) work, the GDP report is arranged in the Appendix A.Item Open Access Aircraft engine performance and integration in a flying wing aircraft conceptual design(Cranfield University, 2012-01) Miao, Zhisong.; Lawson, C. P.The increasing demand of more economical and environmentally friendly aero engines leads to the proposal of a new concept – geared turbofan. In this thesis, the characteristics of this kind of engine and relevant considerations of integration on a flying wing aircraft were studied. The studies can be divided into four levels: GTF-11 engine modelling and performance simulation; aircraft performance calculation; nacelle design and aerodynamic performance evaluation; preliminary engine installation. Firstly, a geared concept engine model was constructed using TURBOMATCH software. Based on parametric analysis and SFC target, the main cycle parameters were selected. Then, the maximum take-off thrust was verified and corrected from 195.56kN to 212kN to meet the requirements of take-off field length and second segment climb. Besides, the engine performance at offdesign points was simulated for aircraft performance calculation. Secondly, an aircraft performance model was developed and the performance of FW-11 was calculated on the basis of GTF-11 simulation results. Then, the effect of GTF-11 characteristics performance on aircraft performance was evaluated. A comparison between GTF-11 and conventional turbofan, RB211- 524B4, indicated that the aircraft can achieve a 13.1% improvement in fuel efficiency by using the new concept engine. Thirdly, a nacelle was designed for GTF-11 based on NACA 1-series and empirical methods while the nacelle dimensions of conventional turbofan RB211-525B4 were obtained by measure approach. Then, the installation thrust losses caused by nacelle drags of the two engines were evaluated using ESDU 81024a. The results showed that the nacelle drags account for about 4.08% and 3.09% of net thrust for GTF-11 and RB211-525B4, respectively. Finally, the considerations of engine installation on a flying wing aircraft were discussed and a preliminary disposition of GTF-11 on FW-11 was presented.Item Open Access Aircraft environmental control systems modeling for configuration selection(Cranfield University, 2013-11) Peng, Xiong; Lawson, C. P.According to the statistics about civil transportation aircraft Environmental Control system (ECS), the three-wheel high pressure water separation system (HPWS) and low pressure water separation system (LPWS) are the most common choices for the 150-seat airliners. Although the former has become the mainstream configuration for air conditioning pack, the latter is still used on Boeing 737-600/700. In order to compare the two configurations and choose the better one for a specific aircraft, simulation and analysis are done. The cabin heat load is calculated at first in order to calculate required engine bleed air mass flow. Then a specific aircraft is defined so that required structural dimensions and cabin comfort indexes can be obtained based on Airbus 320. Thirdly, the component models are built by Matlab/Simulink according to the fundamental knowledge of heat transfer and aerodynamics, the working principles and mechanical dimensions of the components, the ambient environmental parameters and some data from Airbus 320. Consequently, the complete system model can be assembled. After confirming the validity of the model by checking the required ram air mass flow and temperature deviation of the state points referred to Airbus 320, the simulation model is used to do analyze the specific aircraft. Finally, through comparing the different values of ram air mass flow and turbine expansion ratio, as well as the system mass, economic cost and reliability, the better configuration is selected. It can be summarized that the three-wheel LPWS requires less ram air mass flow (0.012kg/s) and a little lower expansion ratio (0.02) than the HPWS, and it also has lower weight (63% of HPWS), lower (83% of HPWS) cost and higher reliability (140% of HPWS), thus it is the suitable configuration for the specific aircraft.Item Open Access Aircraft fuel system prognostics and health management(Cranfield University, 2012-01) Wang, Xiaoyang; Lawson, C. P.This thesis contains the specific description of Group Design Project (GDP) and Individual Research Project (IRP) that are undertaken by the author and form part of the degree of Master of Science. The target of GDP is to develop a novel and unique commercial flying wing aircraft titled FW-11. FW-11 is a three-year collaborative civil aircraft project between Aviation Industry Corporation of China (AVIC) and Cranfield University. According to the market analysis result conducted by the author, 250 seats capacity and 7500 nautical miles were chosen as the design targets. The IRP is the further study of GDP, which is to enhance the competitive capability by deploying prognostics and health management (PHM) technology to the fuel system of FW-11. As a novel and brand-new technology, PHM enables the real-time transformation of system status data into alert and maintenance information during all ground or flight operating phases to improve the aircraft reliability and operating costs. Aircraft fuel system has a great impact on flight safety. Therefore, the development of fuel system PHM concept is necessary. This thesis began with an investigation of PHM, then a safety and reliability analysis of fuel system was conducted by using FHA, FMEA and FTA. According to these analyses, fuel temperature diagnosis and prognosis were chosen as a case study to improve the reliability and safety of FW-11. The PHM architecture of fuel temperature had been established. A fuel temperature prediction model was also introduced in this thesis.Item Open Access Aircraft hydraulic power system diagnostic, prognostics and health management(Cranfield University, 2012-01) Wang, Jian; Lawson, C. P.This Individual Research Project (IRP) is the extension research to the group design project (GDP) work which the author has participated in his Msc programme. The GDP objective is to complete the conceptual design of a 200-seat, flying wing civil airliner—FW-11. The next generation aircraft design demands higher reliability, safety and maintainability. With the development of the vehicle hydraulic system technology, the equipment and systems become more and more complex, their reliability and maintenance become more difficult for designers, manufacturers and customers. To improve the mission reliability and reduce life cycle cost, there is strong demand for the application of health management technology into airframe system design. In this research, the author introduced diagnostic, prognostic and health management (DPHM) concept into the aircraft hydraulic power system development. As a brand new technology, it is a challenge to apply the DPHM techniques to on-board system. Firstly, an assumed hydraulic power system was designed for FW-11 by the author and used as the case in his IRP research. Then the crucial components and key parameters needed to be monitored were obtained based on Function Hazard Analysis and Failure Modes Effects Analysis of this system. The writer compared a few diagnostic and prognostic methods in detail, and then selected suitable ones for a hydraulic power system. A diagnostic process was applied to the hydraulic power system using a Case-based reasoning (CBR) approach, whilst a hybrid prognostic method was suggested for the system. After that, a diagnostic, prognostic and health management (DPHM) architecture of the hydraulic power system was designed at system level based on the diagnostic and prognostic research. The whole research work provided a general and practical instruction for hydraulic system design by means of DPHM application.Item Open Access Aircraft landing gear extension and retraction control system diagnostics, prognostics and health management(Cranfield University, 2012-02) Yang, Yang; Lawson, C. P.This thesis contains the Group Design Project (GDP) work and Individual Research Project (IRP) work. The target of this GDP was to design a long range flying wing passenger aircraft to meet the increasing global aircraft demand. The name of this flying wing aircraft is FW-11. This is a project cooperated between Aviation Industry Corporation of China (AVIC) and Cranfield University. The writer was involved in the conceptual design stage of this project. The author was in charge of the engine market, engine selection, engine sizing and performance. The target of the IRP is to build a set of health management methods including system real-time monitoring, accurate fault diagnosis and prognosis of major components which are suitable for the aircraft landing gear extension and retraction control system. These technologies have the capability to improve mission reliability of the aircraft and the maintenance costs could be reduced. Simultaneously, aircraft landing gear extension and retraction control system, as one of the most important aircraft systems on-board, could directly affect the flight safety. Consequently, diagnostic, prognostic and health management (DPHM) technology is necessary for the system. Based on the FHA, FMEA and FTA of the aircraft landing gear extension and retraction control system, each of the catastrophic events, all the root causes and their effects were identified. Synchronously, all the components which are related to the catastrophic events were found. The rule-based expert system diagnostic technology was chosen from the available approaches and it was successfully applied on the system. Appropriate prognosis approach was recommended for each component of the system according to the features of components of the system. Finally, the DPHM architecture of the landing gear extension and retraction control system was built.Item Open Access Analysis of an electric environmental control system to reduce the energy consumption of fixed-wing and rotary-wing aircraft(Cranfield University, 2011-10) Vega Diaz, Rolando; Lawson, C. P.Nowadays the aviation industry is playing an important role in our daily life, since is the main medium that satisfies the present human needs to reach long distances in the fastest way. But such benefit doesn’t come free of collateral consequences. It is estimated that each year, only the air transport industry produces 628 mega tonnes of CO2. Therefore, urgently actions need to be implemented considering that the current commercial fleet will be doubled by 2050. The research field for more efficient aircraft systems is a very constructive field; where novel ideas can be exploited towards the mitigation of the coming air transport development. In this research the configuration of the Environmental Control System (ECS) has been analysed aiming to reduce its energy consumption for both, fixed-wing and rotary-wing aircraft. This goal is expected to be achieved mainly through the replacement of the main source of power that supplies the ECS, from pneumatic to electric. Differently from the conventional ECS, a new electric-source technology is integrated in the system configuration to compare its effects on the energy consumption. This new technology doesn’t bleed air directly from the engines; instead of that, it takes the air directly from the atmosphere through the implementation of an electric compressor. This new technology has been implemented by Boeing in one of its most recent airplanes, the B787. Towards achieving the main goal, a framework integrated with five steps has been designed. An algorithmic analysis is integrated on the framework. The first step meets the required aircraft characteristics for the analysis. The second step is in charge of meeting the mission profile characteristics where the overall analysis will be carried out. The third step assesses the conventional ECS penalties. The fourth step carries out a complex analysis for the proposed electric ECS model, from its design up to its penalties assessment. The fifth step compares the analysis results for both, the conventional and the electric models. The fourth step of the framework, which analyses the electric ECS, is considered the most critic one; therefore is divided in three main tasks. Firstly, a small parametric study is done to select an optimum configuration. This task is carried out towards meeting the ECS air conditioning requirements of a selected aircraft. Secondly, the cabin temperature and pressurization are simulated to analyse the response of the configured electric ECS for a mission profile. And finally, the fuel penalties are assessed in terms of system weight, drag and fuel due power-off take. To achieve the framework results, a model which receives the name ELENA has been created using the tool Simulink®. This model contains 5 interconnected modules; each one reads a series of inputs to perform calculations and exchange information with other modules.Item Open Access Cabin environment and air quality in civil transport aircraft(Cranfield University, 2012-01) Zhou, Weiguo; Lawson, C. P.The cabin environment of a commercial aircraft, including cabin layout and the quality of air supply, is crucial to the airline operators. These aspects directly affect the passengers’ experience and willing to travel. This aim of this thesis is to design the cabin layout for flying wing aircraft as part of cabin environment work, followed by the air quality work, which is to understand what effect the ECS can have in terms of cabin air contamination. The project, initially, focuses on the cabin layout, including passenger cabin configuration, seat arrangement and its own size due to the top requirements, of a conventional aircraft and further into that of a flying wing aircraft. The cabin work in respect of aircraft conceptual design is discussed and conducted by comparing different design approaches. Before the evaluation of cabin air quality, an overall examination of the main ECS components involved in the contaminants access will be carried on and, therefore, attempt to discover how these components influence the property of the concerned contaminants. By case study in the B767 ECS, there are some comments and discussions regarding the relationship between the cabin air contaminations and the passing by ambient environment. The thesis ends up with a conclusion explaining whether or not the contaminated air enters the occupants’ compartments on aircraft and proposing some approaches and engineering solutions to the continue research.Item Open Access Development of a method to study aircraft trajectory optimisation in the presence of icing conditions(Cranfield University, 2015-11) Shinkafi, A.; Lawson, C. P.There is a growing demand for new technologies and ight procedures that will enable aircraft operators to burn less fuel and reduce the impacts of aviation on the environment. Conventional approaches to trajectory optimisation do not include aircraft systems in the optimisation set-up. However, the fuel penalty due to aircraft systems operation is signi cant. Thus, applying optimised trajectories which do not account for systems o -takes in real aircraft Flight Management System (FMS) will likely fail to achieve a true optimum. This is more important in real scenarios where the ambient conditions in uence the systems operation signi cantly. This research proposed an ice protection methodology which enables the development of a decision making process within the FMS dependent on weather conditions; thus transforming the conventional anti-icing method into a more intelligent system. A case of a medium size transport aircraft ight from London - Amsterdam under various levels of possible icing was studied. The results show that fuel burn due to anti-icing operation can increase up to 3.7% between climb and cruise altitudes. Up to 5.5% of this penalty can be saved using icing optimised trajectories. A 45% reduction in awakenings due to noise was achieved with 3% fuel penalty. The novelty of the study was extended using 3D optimisation to further improve ight operations. It was found that the simulation successfully changed the lateral position of the aircraft to minimise the time spent and distance covered in icing conditions. The work here presents a feasible methodology for future intelligent ice protection system (IPS) development, which incorporates intelligent operation.Item Open Access Development of a tool to analyse helicopter performance incorporating novel systems(Cranfield University, 2013-09) Porras Perucho, Henry Andres; Lawson, C. P.The aerospace industry has always been looking forward new developments with the aim to create more environmental friendly aircraft, as well as to improve their performance. Over the last few years, a prominent research topic to achieve these challenging goals has been focussed on the incorporation of more electric Secondary Power Systems (SPS), this concept is known as More Electric Aircraft (MEA) or All Electric Aircraft (AEA) when the internal combustion engine is also replaced. Among others, Airbus is using Electro-hydrostatic Actuators, (EHAs) to combine hydraulic and electric power in A320 and A340 for flight tests since 1993. The company TTTECH applied the same concept by working on the development of an electrical steering system for an aircraft nose landing gear, and power source rationalization and electrical power flexibility in aircraft. Some of the advantages stated when the MEA concept is applied are: reduction in aircraft weight and performance penalties related to conventional SPS. Although the More/All electric aircraft concept provided satisfactory results for fixed-wing aircraft, research for rotary-wing aircraft is less common. This encourages the assessment of fuel consumption and performance penalties due to conventional and more electric SPS at conceptual level, which could achieve similar outcomes, while finding the best configuration possible. This project takes into account the previous research focused on fixed-wing aircraft and studies on new technologies for SPS within Cranfield University, this includes electrical Ice Protection System (IPS), Environmental Control System (ECS) and Actuation System (AS). Additionally, Fuel System (FS) and Electrical System (ES) capabilities were added, developing a generic tool able to predict the total power requirements depending on the flight conditions. This generic tool was then integrated with a performance model, where overall fuel consumption is calculated for a flight mission, giving continuity and improvement to the work already done. Secondary systems configuration and operating characteristics for a representative light single-engine rotary-wing aircraft were tailored, and the systems behaviour is presented. Finally, fuel consumption was calculated for a baseline mission profile, and compared to the fuel consumption when the systems are not included. The baseline mission set the initial flight conditions from which a parametric study was carried out; by varying these conditions the parametric study determined total fuel requirements for the analysed flight segments. An increment of up to %1.9 in the fuel consumption was found by integrating the proposed systems to the performance model, showing the impact produced by the systems, and the importance of studying different technologies to minimise it.Item Open Access Dynamic power distribution management for all electric aircraft(Cranfield University, 2011-01) Xia, Xiuxian; Lawson, C. P.In recent years, with the rapid development of electric and electronic technology, the All-Electric Aircraft (AEA) concept has attracted more and more attention, which only utilizes the electric power instead of conventional hydraulic and pneumatic power to supply all the airframe systems. To meet the power requirements under various flight stages and operating conditions, the AEA approach has resulted in the current aircraft electrical power generation capacity up to 1.6 MW. To satisfy the power quality and stability requirements, the advanced power electronic interfaces and more efficient power distribution systems must be investigated. Moreover, with the purpose of taking the full advantages of available electrical power, novel dynamic power distribution management research and design for an AEA must be carried out. The main objective of this thesis is to investigate and develop a methodology of more efficient power distribution management with the purpose of minimizing the rated power generating capacity and the mass of the electrical power system (EPS) including the power generation system and the power distribution system in an AEA. It is important to analyse and compare the subsistent electrical power distribution management approaches in current aircraft. Therefore the electrical power systems of A320 and B777, especially the power management system, will be discussed in this thesis. Most importantly the baseline aircraft, the Flying Crane is the outcome of the group design project. The whole project began in March 2008, and ended in September 2010, including three stages: conceptual design, preliminary design and detailed design. The dynamic power distribution management research is based on the power distribution system of the Flying Crane. The main task of the investigation is to analyse and manage the power usage among and inside typical airframe systems by using dynamic power distribution management method. The characteristics and operation process of these systems will be investigated in detail and thoroughly. By using the method of dynamic power distribution management, all the electrical consumers and sub-systems powered by electricity are managed effectively. The performance of an aircraft can be improved by reducing the peak load requirement on board. Furthermore, the electrical system architecture, distributed power distribution system and the dynamic power distribution management system for AEA are presented. Finally, the mass of the whole electrical power system is estimated and analysed carefully.Item Open Access Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study(Cranfield University, 2014-09) Seresinhe, R.; Lawson, C. P.Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes many environmental penalties. The most obvious is the fossil fuel based fuel burn and the consequent greenhouse gas emissions. Aircraft operations directly contribute to the CO2 and NOX emissions among others. The dependency on a limited natural resource such as fossil fuel presents the case for fuel optimised operation. The by-products of burning fossil fuel some of which are considered pollutants and greenhouse gases, presents the case for emissions optimised operations. Moreover, when considering the local impact of aircraft operation, aircraft noise is recognised as a pollutant. Hence noise optimised aircraft operation needs to be considered with regards to local impacts. It is clear whichever the objective is, optimised operation is key to improving the efficiency of the aircraft. The operational penalties have many different contributors. The most obvious of which is the way an aircraft is flown. This covers the scope of aircraft trajectory and trajectory optimisation. However, the design of the aircraft contributes to the operational penalties as well. For example the more-electric aircraft is an improvement over the conventional aircraft in terms of overall efficiency. It has been proven by many studies that the more-electric concept is more fuel efficient than a comparable conventional aircraft. The classical approach to aircraft trajectory optimisation does not account for the fuel penalties caused due to airframe systems operation. Hence the classical approach cannot define a conventional aircraft from a more-electric aircraft. With the more-electric aircraft expected to be more fuel efficient it was clear that optimal operation for the two concepts would be different. This research presents a methodology that can be used to study optimised trajectories for more-electric aircraft. The study present preliminary evidence of the environmental impact due to airframe systems operation and establishes the basis for an enhanced approach to aircraft trajectory optimisation which include airframe system penalties within the optimisation loop. It then presents a suite of models, the individual modelling approaches and the validation to conduct the study. Finally the research presents analysis and comparisons between the classical approach where the aircraft has no penalty due to systems, the conventional aircraft and the more-electric aircraft. When the case studies were optimised for the minimum fuel burn operation, the conventional airframe systems accounted for a 16.6% increase in fuel burn for a short haul flight and 6.24% increase in fuel burn for a long haul flight. Compared to the conventional aircraft, the more electric aircraft had a 9.9% lower fuel burn in the short haul flight and 5.35% lower fuel burn in the long haul flight. However, the key result was that the optimised operation for the moreelectric aircraft was significantly different than the conventional aircraft. Hence this research contributes by presenting a methodology to bridge the gap between theoretical and real aircraft-applicable trajectory optimisation.Item Open Access A Method to Support the Requirements Trade-Off of Integrated Vehicle Health Management for Unmanned Aerial Systems(Cranfield University, 2014-07) Heaton, Andrew Edward; Fan, Ip-Shing; Lawson, C. P.he digital revolution in the latter part of the twentieth century has resulted in the increased use and development of Cyber-Physical Systems. Two of which are Unmanned Aerial Systems (UAS) and Integrated Vehicle Health Management (IVHM). Both are relatively new areas of interest to academia, military, and commercial organisations. Designing IVHM for a UAS is no easy task – the complexity inherent in UAS, with projects involving multiple partners/organisations; multiple stakeholders are also interested in the IVHM. IVHM needs to justify itself throughout the life of the UAS, and the lack of established knowledge makes it hard to know where to start. The establishment and analysis of requirements for IVHM on UAS is known to be important and costly – and for IVHM a complex one. There are multiple stakeholders to satisfy and ultimately the needs of the customer, all demanding different things from the IVHM, and with limited resources they need to be prioritised. There are also many hindrances to this: differences in language between stakeholders, customers failing to see the benefits, scheduling conflicts, no operational data. The contribution to knowledge in this thesis is the IVHM Requirements Deployment (IVHM-RD) – a method for a designer of UAS IVHM to build a tool which can consolidate and evaluate the various stakeholder’s requirements. When the tool is subsequently populated with knowledge from individual Subject Matter Experts (SMEs), it provides a prioritised set of IVHM requirements. The IVHM-RD has been tested on two design cases and generalised for the use with other designs. Analysis of the process has been conducted and in addition the results of the design cases have been analysed in three ways: how the results relate to each design case, comparison between the two cases, and how much the relationships between requirements are understood. A validation exercise has also been conducted to establish the legitimacy of the IVHM-RD process. This research is likely to have an impact on the elicitation and analysis of IVHM requirements for UAS – and the wider design process of IVHM. The IVHM-RD process should also prove of use to designers of IVHM on other assets. The populations of the design cases also provide information which could be useful to other designer and future research.Item Open Access Methodology for avionics integration optimisation(Cranfield University, 2020-10) Radaei, Mohammad; Jia, Huamin; Lawson, C. P.Every state-of-art aircraft has a complex distributed systems of avionics Line Replaceable Units/Modules (LRUs/LRMs), networked by several data buses. These LRUs are becoming more complex because of the increasing number of new avionics functions need to be integrated in an avionics LRU. The evolution of avionics data buses and architectures have moved from distributed analogue and federated architecture to digital Integrated Modular Avionics (IMA). IMA architecture allows suppliers to develop their own LRUs/LRMs capable of specific features that can then be offered to Original Equipment Manufacturers (OEMs) as Commercial-Off-The-Shelf (COTS) products. In the meantime, the aerospace industry has been investigating new solutions to develop smaller, lighter and more capable avionics LRUs to be integrated into avionics architecture. Moreover, the complexity of the overall avionics architecture and its impact on cable length, weight, power consumption, reliability and maintainability of avionics systems encouraged manufacturers to incorporate efficient avionics architectures in their aircraft design process. However, manual design cannot concurrently fulfil the complexity and interconnectivity of system requirements and optimality. Thus, developing computer-aided design (CAD), Model Based System Engineering (MBSE) tools and mathematical modelling for optimisation of IMA architecture has become an active research area in avionics systems integration. In this thesis, a general method and tool are developed for optimisation of avionics architecture and improving its operational capability. The tool has three main parts including a database of avionics LRUs, mathematical modelling of the architectures and optimisation algorithms. The developed avionics database includes avionics LRUs with their technical specifications and operational capabilities for each avionics function. A MCDM method, SAW, is used to quantify and rank each avionics LRU’s operational capability. Based on the existing avionics LRUs in the database and aircraft level avionics requirements two avionics architectures are proposed i.e. AFCS architecture (SSA) and avionics architecture (LSA). The proposed avionics architectures are then modelled using mathematical programming. Further, the allocation of avionics LRUs to avionics architecture and mapping the avionics LRUs to their installation locations are defined as an assignment problem in Integer Programming (IP) format. The defined avionics architecture optimisation problem is to optimise avionics architecture in terms of mass, volume, power consumption, MTBF and operational capability. The problems are solved as both single-objective and multi-objective optimisation using the branch-and-bound algorithm, weighted sum method and Particle Swarm Optimisation (PSO) algorithm. Finally, the tool provides a semi-automatic optimisation of avionics architecture. This helps avionics system architects to investigate and evaluate various architectures in the early stage of design from an LRU perspective. It can also be used to upgrade a legacy avionics architecture.Item Open Access Power Consumption Analysis of Rotorcraft Environmental Control Systems(Cranfield University, 2014-06) Amaya Gonzalez, Hernan Andres; Lawson, C. P.Helicopters have now become an essential part for civil and military activities, for the next few years a significant increase in the use of this mean of transportation is expected. Unlike many fixed-wing aircraft, helicopters have no need to be pressurized due to their operating at low altitudes. The Environmental Control Systems (ECS) commonly used in fixed-wing aircraft are air cycle systems, which use the engine compressor’s bleed flow to function. These systems are integrated in the aircraft from inception. The ECS in helicopters is commonly added subsequently to an already designed airframe and power plant or as an additional development for modern aircraft. Helicopter engines are not designed to bleed air while producing their rated power, due to this a high penalty in fuel consumption is paid by such refitted systems. A detailed study of the different configurations of ECS for rotorcraft could reduce this penalty by determining the required power resulting from each of the system configurations, and therefore recommend the most appropriate one to be implemented for a particular flight path and aircraft. This study presents the conducted analysis and subsequent simulation of the environmental control system in a selected representative rotorcraft: the Bell206L-4. This investigation seeks to optimize the rotorcraft’s power consumption and energy waste; by taking into consideration the cabin heat load. It consequently aims to minimize these penalties, achieving passenger comfort, an optimally moist air for equipment and a reduction in the environmental impact. For the purpose of this analysis a civil aircraft was chosen for a rotary-wing type. This helicopter was analysed with different air-conditioning packs complying with the current airworthiness requirements. These systems were optimized with the inclusion of different environmental control models, and the cabin heat load model, which provided the best air-conditioning for many conditions and mission scopes, thus reducing the high fuel consumption in engines and hence the emission of gases into the environment. Each of the models was computed in the Matlab-simulink® software. Different case studies were carried out by changing aircraft, the system’s configurations and flight parameters. Comparisons between the different systems and sub-systems were performed. The results of these simulations permitted the ECS configuration selection for optimal fuel consumption. Once validated the results obtained through this model were included in Rotorcraft Mission Energy Management Model (RMEM), a tool designed to predict the power requirements of helicopter systems. The computed ECS model shows that favourable reductions in fuel burn may be achievable if an appropriated configuration of ECS is chosen for a light rotorcraft. The results show that the VCM mixed with engine bleed air is the best configuration for the chosen missions. However, this configuration can vary according to the mission and environment.Item Open Access Simulating actuator energy demands of an aircraft in flight(Cranfield University, 2014-02-13) Cooper, Michael Anthony; Lawson, C. P.This thesis contributes towards the discipline of whole aircraft simula- tion; modelling ight dynamics and airframe systems simultaneously. The objective is to produce estimates of the dynamic power consumption char- acteristics of the primary ight control actuation system when executing manoeuvres. Three technologies are studied; the classic hydraulic actuators and the electromechanical and electro-hydrostatic types that are commonly associated with the more electric aircraft. Models are produced which represent the ight dynamics of an aircraft; these are then combined with low frequency dynamic functional models of the three actuator technologies and ight controllers. The result is a model, capable of faster than real time simulation, which produces estimates of ac- tuator power consumption as the aircraft follows prede ned trajectories. The model is used to quantify the energy consumption as a result of di erent manoeuvre rates when executing banked turns. The result from an actuation system point of view alone is that the lower the turn rate, the lower the overall energy used. The tradeo is that the turn radius becomes larger. The use of the model can be extended to assist with additional design challenges such as actuator design and speci cation. Using methods to size actuators based on stall force and no load speed properties leads to oversizing of the control system. Performing dynamic analyses is usually a combined task of laboratory based actuator test rigs stimulated by input data gathered during ight tests. The model in this work provides a method of generating data for preliminary design; therefore reducing the amount of ight testing required in a design and certi cation programme. The major results discovered using the tools developed in this thesis are that a hydraulically powered aileron uses 4.23% more energy to achieve a turn at a heading rate of 0.03 rad/s compared to a 0.005 rad/s manoeuvre in the same conditions. The electromechanical actuator (EMA) uses 1.67% more and the electrohydrostatic actuator (EHA) uses 1.54% more to achieve the same turns. It implies reduced turn rate turns would have the largest bene t for reducing energy consumption in current hydraulically powered actuation systems, compared to electrical actuators.Item Open Access Study of 270VDC system application(Cranfield University, 2010-01) Chen, Junxiang; Lawson, C. P.As increasing power requirement in more or all electric aircraft, electric power system is required to be more efficient and lower in weight. Among the current power generation technologies, 115V variable frequency (VF) system and 270VDC system are regarded as the two optimal options for future use in MEA or AEA. Therefore, it is very important to compare their relative merits in order to determine the optimal choice on the primary power type. As the reviewed literature mainly represents the comparison between 270VDC system and 115V constant frequency system, it is very necessary to conduct the comparison between 270VDC system and 115V/VF system. The aim of this study is to grasp the nature of these systems and evaluate these two systems in terms of some engineering aspects. Literature regarding the power generation technology is first investigated. Based on initial comparison, the 270VDC brushless generating system and 115V VF generating system are selected for this study. Before conducting system architecture design and wiring system design, the load requirement analysis and optimization are conducted. Finally, a comparison between these two systems will be made in terms of weight, power off take, minimum voltampere (VA) capacity requirement, voltage drop, reliability, life cycle cost and risk. The results show that the 270VDC system is superior to the115V/VF system in terms of weight and efficiency. With regards to system reliability, the 270VDC system can be designed as either an active parallel system or a standby system while the 115V/VF system can only be designed as a standby redundant system. As far as risk is concerned, the 270VDC is more dangerous than the 115V/VF system in terms of arcing risk and corona discharge. All in all, the 270VDC system can be considered as the optimal choice for future use in AEA or MEA.