Browsing by Author "Li, Huigui"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Comparative analysis of cold and warm rolling on tensile properties and microstructure of additive manufactured Inconel 718(Springer, 2022-01-14) Zhang, Tao; Li, Huigui; Gong, Hai; Wu, Yunxin; Ahmad, Abdulrahaman Shuaibu; Chen, Xin; Zhang, XiaoyongDespite the high efficiency and low cost of wire + arc additive manufacture (WAAM), the epitaxial grown columnar dendrites of WAAM deposited Inconel 718 cause inferior properties and severe anisotropy compared to the wrought components. Fundamental studies on the influence of one-pass cold and warm rolling on hardness and microstructure were investigated. Then the interpass cold and warm rolling on tensile properties were also analyzed. The results show that the one-pass rolling increases the hardness and displays a heterogeneous hardness distribution compared to the as-deposited material, and the warm rolling exhibits a larger and deeper strain compared to cold rolling. The columnar dendrites gradually change to cell dendrites under the rolling process and then change to equiaxed grains with the subsequent new layer deposition. The average grain size is 16.8 μm and 23.5 μm for the warm and cold rolling, respectively. The strongly textured columnar dendrites with preferred < 001 > orientation transform to equiaxed grains with random orientation after rolling process. The grain refinement contributes to the dispersive distributed strengthening phases and the increase in its fraction with heat treatment. The as-deposited samples show superior tensile properties compared to the cast material but inferior compared to the wrought components, while the warm-rolled samples show superior tensile properties to wrought material. Isotropic tensile properties are obtained in warm rolling compared to cold rolling. The rolling process and heat treatment both decrease the elongation and lead to a transgranular ductile fracture mode. Finally, the rolling-induced strengthening mechanism was discussed.Item Open Access Effect of rolling force on tensile properties of additively manufactured Inconel 718 at ambient and elevated temperatures(Elsevier, 2021-07-03) Zhang, Tao; Li, Huigui; Gong, Hai; Wu, Yunxin; Ahmad, Abdulrahaman Shuaibu; Chen, XinInferior mechanical properties and severe anisotropy behavior of wire + arc additive manufactured (WAAM) Inconel 718 due to the large epitaxial grown columnar dendrites restrict the industrial application of WAAM deposition. Cold rolling was integrated into the WAAM deposition process and the effect of rolling force on microstructure, precipitatation distribution and tensile properties at ambient and elevated temperatures were investigated. The results show that the hardness of cold-rolled samples is much larger than that of the as-deposited and it increases with the increase in the rolling force. The columnar dendrites of the as-deposited sample changed to finer equiaxed grains of 26.5 and 14.7 μm after cold rolling with the force of 50 kN and 75 kN, respectively. Meanwhile, more uniformly distributed grains and less δ phase appear for 75 kN rolled sample. The stress-strain curves are smooth for the tensile tests at ambient temperature, while there are serrations at elevated temperature due to the dynamic strain aging behavior. The as-deposited sample shows inferior tensile properties to the wrought material at ambient and elevated temperatures. The cold-rolled samples both exceed the wrought material at ambient temperature; however, they show higher strength but lower elongation compared to the wrought material. The 75 kN cold rolled sample shows much higher strength and similar elongation to the wrought material for the test at elevated temperature. The grain morphology and recrystallization, as well as the strengthening mechanism of hybrid deposition and cold rolling process were discussed.Item Open Access Hybrid wire - arc additive manufacture and effect of rolling process on microstructure and tensile properties of Inconel 718(Elsevier, 2021-09-08) Zhang, Tao; Li, Huigui; Gong, Hai; Wu, Yunxin; Diao, Chenglei; Zhang, Xiaoyong; Williams, StewartWire - arc additive manufacture (WAAM) is suitable for Inconel 718 components due to its high deposition efficiency. However, large columnar dendrites decrease the mechanical properties and can cause severe mechanical anisotropy. Cold rolling and warm rolling through flame heating have been investigated to analyze their effects on microstructure and tensile properties compared to as-deposited WAAM material. Standard solution and double aging (SA), as well as homogenization followed by solution and aging (HSA) heat treatments were compared. The results show that the large columnar dendrites change to finer equiaxed grains 16.4 μm and 26.2 μm in size for warm and cold rolled alloy, respectively. This increases to 22.5 μm and 30.1 μm after HSA treatment. The microhardness and strength of rolled material increase significantly and the warm rolled material after HSA treatment exceeds that of the wrought alloy. While the as-deposited and cold rolled samples both show significant anisotropy, isotropic tensile properties are obtained for warm rolled plus HSA heat treated samples. Finer equiaxed grains with more dispersive distributions of γ' and γ" strengthening precipitation contribute to the superior mechanical properties for warm rolled material. For both the cold and warm rolled material, there was an elongation decrease due to precipitated particles, which also led to a trans-granular ductile fracture mode. The strengthening mechanism of the hybrid rolling process was analyzed and found to be related to work hardening, grain boundary strengthening, precipitated strengthening phases and the δ phase.Item Open Access Study on location-related thermal cycles and microstructure variation of additively manufactured Inconel 718(Elsevier, 2022-04-04) Zhang, Tao; Li, Huigui; Gong, Hai; Wu, Yunxin; Chen, Xin; Zhang, XiaoyongThe complicated thermal history of wire + arc additive manufacturing (WAAM) will affect the microstructure variation and mechanical properties of the as-deposited material. Numerial models of Inconel 718 in WAAM deposition were established and the location-related thermal history and temperature distribution were analyzed. A hybrid method of WAAM and cold rolling was investigated and its effect on the microstructure distribution and texture was investigated compared to that in as-deposited condition. The results show that WAAM deposition features repeated thermal cycles, high heating rate and low cooling rate. The trough values of the thermal cycles first increases and then decreases, while the peak temperature always decreases with the proceeding of the deposition process. The as-deposited samples show columnar dendrites and its average dendrite arm spacing increases with the increased build height due to the location-related heat accumulation. The strongly textured columnar dendrites with preferred <001> orientation transform to equiaxed grains with random orientation in heat-affected zone after cold rolling process, and its average size decreases with the increased rolling force. The as-deposited samples show the strongest intensity of 7.609 for the {100} family of grains oriented along the transverse direction; while it decreases to 3.629 and 2.057 for the cold rolled conditions with the force of 50 kN and 75 kN, respectively. The relationship between thermal history and the microstructure distribution was discussed. The mechanism of hybrid WAAM and cold rolling method consisted of spatially and temporally heterogeneous work hardening and recrystallization.