Browsing by Author "Li, Tao"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Aircraft assembly process design for complex systems installation and test integration.(Cranfield University, 2019-04) Li, Tao; Lockett, Helen L.; Lawson, CraigThe assembly line planning process connects product design and manufacturing through translating design information to assembly integration sequence. The assembly integration sequence defines the aircraft system components installation and test precedence of an assembly process. From a systems engineering view point, this activity is part of the complex systems integration and verification process. At the early conceptual design phase of assembly line planning, the priority task of assembly process planning is to understand product complexities in terms of systems interactions, and generate the installation and test sequence to satisfy the designed system function and meet design requirements. This research proposes to define these interactions by using systems engineering concept based on traceable RFLP (Requirement, Functional, Logical and Physical) models and generate the assembly integration sequence through a structured approach. A new method based on systems engineering RFLP framework is proposed to generate aircraft installation and test sequence of complex systems. The proposed method integrates aircraft system functional and physical information in RFLP models and considers these associated models as new engineering data sources at the aircraft early development stage. RFLP modelling rules are created to allow requirements, functional, logical and physical modes be reused in assembly sequence planning. Two case studies are created to examine the method. Semi- structured interviews are used for research validation. The results show that the proposed method can produce a feasible assembly integration sequence with requirements traceability, which ensures consistency between design requirements and assembly sequences.Item Open Access Digital assembly process design for aircraft systems(Cranfield University, 2012-01) Li, Tao; Lockett, Helen L.The research described in this thesis concentrates on the development of an integrated assembly process design for aircraft systems. Assembly process design is one of the most important and complicated activities in aircraft manufacturing. Many solutions are suggested in previous research to develop process design method. But gaps are found in assembly process design of aircraft system in following studies. In this research, an integration approach which combined with product development philosophy, design for assembly method and digital assembly technology is proposed to solve the issues in the whole product development lifecycle. Three case studies from different design phase are used to examine the integrated process design method. The research results demonstrate that the proposed digital process design method can be used to develop manufacturing strategies of system assembly in early design phase, and improve the accuracy and operability of assembly instructions according to 3-D assembly process plans in detailed design phase. The product design also benefits from this method in terms of correcting design errors in the concurrent engineering process. A proposed process planning system framework based on lightweight CAD is developed in this research. The customized assembly representation of 3DVIA system illustrates the advantages of lightweight CAD when applying in shop floor.Item Open Access An investigation into the interrelationship between aircraft systems and final assembly process design(Elsevier, 2017-05-09) Li, Tao; Lockett, Helen L.Modern aircraft are more integrated with advanced systems functionalities, which result in ever-increasing aircraft complexity, further development difficulties and development delays. These system complexities are mostly in the form of system interactions that make it difficult to understand the overall system characteristics. At the early stages of final assembly line (FAL) design, one of the most important objectives is to arrange the installation and test tasks from components to sub-systems and systems in the proper sequence to meet the designed functions and prevent hazards from the integration process. Improper sequencing of the final assembly process will cause rework, time delays, cost and potential safety risk in development. In the field of final assembly line design, previous research has mostly focused on assembly line balancing or supply chain design based on structural parts assembly. However, these approaches do not consider the early final assembly line definition or test allocation for system functions. In this paper, the research proposes a method based on a systems engineering view and integrated computer aided design (CAD) to help better understand system interactions and generate viable final assembly process sequencing. This research aims to develop a concept of unified master data for final assembly design, which contains 3D geometrical CAD, system functions and interaction characteristics. The paper will present the methodology framework, key concepts and associated industrial software packages for implementation. The paper concludes with further discussion of an initial case study.Item Open Access Using requirement-functional-logical-physical models to support early assembly process planning for complex aircraft systems integration(Elsevier, 2020-01-10) Li, Tao; Lockett, Helen L.; Lawson, Craig;The assembly line process planning connects product design and manufacturing through translating design information to assembly integration sequence. The assembly integration sequence defines the aircraft system components installation and test precedence of an assembly process. This activity is part of the complex systems integration and verification process from a systems engineering view. In this paper, the complexity of modern aircraft is defined by classifying aircraft system interactions in terms of energy flow, information data, control signals and physical connections. At the early conceptual design phase of assembly line planning, the priority task is to understand these product complexities, and generate the installation and test sequence that satisfies the designed system function and meet design requirements. This research proposes a novel method for initial assembly process planning that accounts for both physical and functional integrations. The method defines aircraft system interactions by using systems engineering concepts based on traceable RFLP (Requirement, Functional, Logical and Physical) models and generate the assembly integration sequence through a structured approach. The proposed method is implemented in an industrial software environment, and tested in a case study. The result shows the feasibility and potential benefits of the proposed method.