CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lin, Fei"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ex situ analysis of high-strength quenched and micro-alloyed steel during austenitising bending process: numerical simulation and experimental investigation
    (Springer, 2022-05-11) Lu, Yao; Xie, Haibo; Wang, Jun; Jia, Fanghui; Lin, Fei; Zhou, Cunlong; Xu, Jianzhong; Han, Jingtao; Jiang, Zhengyi
    This paper compares the microstructure and mechanical evolution in a high-strength quenched and micro-alloyed steel during the austenitising bending process. Simulation results indicated a new finding that the stress neutral layer (SNL) tends to move to the tension zone during straining. The hardness gradient detected from the centre to compression/tension zones was resulted from comprehensive factors: First of all, the location of SNL revealed a prominent impact on strength. Second, the dislocation accumulation would be responsible for the hardness gradient on the surfaces. In addition, the overall strength decrease during straining was mainly ascribed to integrated effects of dynamic recovery (DRV) and dynamic recrystallisation (DRX). Apart from that, overall smaller martensite packet size and coarser prior austenite grains resulted in the increased hardness value at a lower bending degree. Also, the high consistency between experimental and simulation results is instructive for the practical forming process of railway spring fasteners.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Exploring the use of graphene lubricant and TiO2 nanolubricants in micro deep drawing of stainless steel SUS301
    (Springer, 2024-01-25) Pan, Di; Zhang, Guangqing; Jia, Fanghui; Wu, Hui; Lu, Yao; Zhang, Tao; Li, Lianjie; Lin, Fei; Yang, Ming; Jiang, Zhengyi
    This study investigates the effects of different lubrication conditions on drawing force and microcup formation during micro deep drawing (MDD). Results show that graphene lubricant, in combination with TiO2 nanolubricants, has the potential to reduce friction during MDD. The peak drawing force was reduced by 15.39% when both lubricants were used together, while the use of TiO2 nanolubricant and 10.0 mg/ml graphene lubricant reduced it by 6.03% and 14.52%, respectively. The study also reveals that lubricants reduce wrinkling during the formation of microcups by minimising energy consumption during the primary formation. However, the combination of TiO2 nanolubricant and graphene lubricant can cause inhomogeneous formation on the upper part of the blank, leading to more apparent wrinkling. Overall, the study highlights the potential of TiO2 nanolubricant and graphene lubricant in reducing friction and improving microcup formation during MDD.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback