Browsing by Author "Lin, Zhonglu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access How wavelength affects hydrodynamic performance of two accelerating mirror-symmetric undulating hydrofoils(American Institute of Physics (AIP), 2023-08-02) Lin, Zhonglu; Liang, Dongfang; Bhalla, Amneet Pal Singh; Sheikh Al-Shabab, Ahmed A.; Skote, Martin; Zheng, Wei; Zhang, YuFish schools are capable of simultaneous linear acceleration. To reveal the underlying hydrodynamic mechanism, we numerically investigate how Reynolds number Re ¼ 1000–2000, Strouhal number St ¼ 0:2–0:7, and wavelength k ¼ 0:5–2 affect the mean net thrust and net propulsive efficiency of two side-by-side hydrofoils undulating in anti-phase. In total, 550 cases are simulated using immersed boundary method. The thrust increases significantly with the wavelength and the Strouhal number, yet only slightly with the Reynolds number. We apply a symbolic regression algorithm to formulate this relationship. Furthermore, we find that mirror-symmetric schooling can achieve a net thrust more than ten times that of a single swimmer, especially at low Reynolds numbers. The highest efficiency is obtained at St ¼ 0:5 and k ¼ 1:2, where St is consistent with that observed in the linear-accelerating natural swimmers, e.g., Crevalle jack. Six distinct flow structures are identified. The highest thrust corresponds to an asymmetric flow pattern, whereas the highest efficiency occurs when the flow is symmetric with converging vortex streets.Item Open Access Numerical investigation of oleo-pneumatic shock absorber: setup and validation(ECCOMAS, 2021-03-11) Sheikh Al-Shabab, Ahmed A.; Vitlaris, Dimitrios; Lin, Zhonglu; Grenko, Bojan; Tsoutsanis, Panagiotis; Antoniadis, Antonis; Skote, MartinThe simulation of an oleo-pneumatic shock absorber is discussed focusing on the solver validation and high fidelity case setup. The multi-physics nature of the problem is tackled by conducting a range of validation cases in the base areas expected to be of relevance. A dynamic system model of the shock absorber is used to generate physically consistent boundary conditions. In addition, steady RANS simulations provide a preliminary insight into the internal flow development and to assist in the design of higher resolution grids.