Browsing by Author "Lohse, Niels"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Rapid and automated configuration of robot manufacturing cells(Elsevier, 2025-04-01) Asif, Seemal; Bueno, Mikel; Ferreira, Pedro; Anandan, Paul; Zhang, Ze; Yao, Yue; Ragunathan, Gautham; Tinkler, Lloyd; Sotoodeh-Bahraini, Masoud; Lohse, Niels; Webb, Phil; Hutabarat, Windo; Tiwari, AshutoshThis study presents the Reconfigurable and Responsive Robot Manufacturing (R3M) architecture, a novel framework engineered to autonomously adapt to fluctuating product variants and demands within manufacturing environments. At the heart of R3M lies an integrated architecture that ensures a seamless data flow between critical modules, facilitated by an advanced communication platform. These modules are central to delivering a range of services crucial for operational efficiency. Key to the architecture is the incorporation of Automated Risk Assessment aligned with ISO-12100 standards, utilizing ROS2 Gazebo for the dynamic modification of robot skills in a plug-and-produce manner. The architecture's unique approach to requirements definition employs AutomationML (AML), enabling effective system integration and the consolidation of varied information sources. This is achieved through the innovative use of skill-based concepts and AML Class Libraries, enhancing the system's adaptability and integration within manufacturing settings. The narrative delves into the intricate descriptions of products, equipment, and processes within the AML framework, highlighting the strategic consideration of profitability in the product domain and distinguishing between atomic and composite skills in equipment characterization. The process domain serves as an invaluable knowledge repository, bridging the gap between high-level product demands and specific equipment capabilities via process patterns. The culmination of these elements within the R3M framework provides a versatile and scalable solution poised to revolutionize manufacturing processes. Empirical results underscore the architecture's robust perception abilities, with a particular focus on a real-world application in robotic lamination stacking, elucidating both the inherent challenges and the tangible outcomes of the R3M deployment.Item Open Access “We don’t need ergonomics anymore, we need psychology!” – The human analysis needed for human-robot collaboration(AHFE International, 2022-07-24) Fletcher, Sarah; Eimontaite, Iveta; Webb, Phil; Lohse, NielsHuman labour has always been essential in manufacturing and, still, no machine or robot can replace innate human complex physical (dexterity) and cognitive (reasoning) skills. Understandably, industry has constantly sought new automation technologies and largely only concerned itself with physical health and safety issues to improve / maintain production processes, but these industrial engineering approaches have largely overshadowed our understanding of wider social and emotional issues that can also significantly impact on human-system performance and wellbeing. In the current climate, industrial automation is rapidly increasing and crucial to manufacturing competitiveness, and requires greater, closer human interaction. Consequently, people’s cognitive-affective abilities have never been more critical and there has never been a more important time to thoroughly understand them. Moreover, industrial engineers are themselves now more aware and interested in understanding how people can better perform tasks in collaboration with intelligent automation and robotics. This paper describes why industry is only now realising the need for psychology, how far research has advanced our knowledge, and how a major UK project is working to develop new human behaviour models to improve effectiveness in the design of human-robot interactions in modern production processes. As one recent anecdotal comment from a UK industrialist set out: “we don’t need ergonomics anymore – our industrial engineers can do that, we need psychology”!