Browsing by Author "Lynch, John"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Open Access Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors(Frontiers, 2021-02-03) Lynch, John; Cain, Michelle; Frame, David; Pierrehumbert, RaymondAgriculture is a significant contributor to anthropogenic global warming, and reducing agricultural emissions—largely methane and nitrous oxide—could play a significant role in climate change mitigation. However, there are important differences between carbon dioxide (CO2), which is a stock pollutant, and methane (CH4), which is predominantly a flow pollutant. These dynamics mean that conventional reporting of aggregated CO2-equivalent emission rates is highly ambiguous and does not straightforwardly reflect historical or anticipated contributions to global temperature change. As a result, the roles and responsibilities of different sectors emitting different gases are similarly obscured by the common means of communicating emission reduction scenarios using CO2-equivalence. We argue for a shift in how we report agricultural greenhouse gas emissions and think about their mitigation to better reflect the distinct roles of different greenhouse gases. Policy-makers, stakeholders, and society at large should also be reminded that the role of agriculture in climate mitigation is a much broader topic than climate science alone can inform, including considerations of economic and technical feasibility, preferences for food supply and land-use, and notions of fairness and justice. A more nuanced perspective on the impacts of different emissions could aid these conversationsItem Open Access Are single global warming potential impact assessments adequate for carbon footprints of agri-food systems?(IOP Publishing, 2023-07-18) McAuliffe, Graham A.; Lynch, John; Cain, Michelle; Buckingham, Sarah; Rees, Robert M.; Collins, Adrian L.; Allen, Myles; Pierrehumbert, Raymond; Lee, Michael R. F.; Takahashi, TaroThe vast majority of agri-food climate-based sustainability analyses use GWP100 as an impact assessment, usually in isolation; however, in recent years, discussions have criticised the 'across-the-board' application of GWP100 in Life Cycle Assessments (LCA), particularly of food systems which generate large amounts of methane (CH4) and considered whether reporting additional and/or alternative metrics may be more applicable to certain circumstances or research questions. This paper reports a sensitivity analysis using a pasture-based beef production system (a producer of high CH4 emissions) as an exemplar to compare various climate impact assessments: CO2-equivalents using GWP100 and GTP100, and 'CO2-warming-equivalents' using 'GWP Star', or GWP*. The inventory for this system was compiled using data from the UK Research and Innovation (UKRI) National Capability, the North Wyke Farm Platform, in Devon, SW England. LCAs can have an important bearing on: (i) policymakers' decisions; (ii) farmer management decisions; (iii) consumers' purchasing habits; and (iv) wider perceptions of whether certain activities can be considered 'sustainable' or not; it is, therefore, the responsibility of LCA practitioners and scientists to ensure that subjective decisions are tested as robustly as possible through appropriate sensitivity and uncertainty analyses. We demonstrate herein that the choice of climate impact assessment has dramatic effects on interpretation, with GWP100 and GTP100 producing substantially different results due to their different treatments of CH4 in the context of carbon dioxide (CO2) equivalents. Given its dynamic nature and previously proven strong correspondence with climate models, out of the three assessments covered, GWP* provides the most complete coverage of the temporal evolution of temperature change for different GHG emissions. We extend previous discussions on the limitations of static emission metrics and encourage LCA practitioners to consider due care and attention where additional information or dynamic approaches may prove superior, scientifically speaking, particularly in cases of decision support.Item Open Access Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming(IOP, 2021-06-23) Allen, Myles R.; Tanaka, Katsumasa; Macey, Adrian; Cain, Michelle; Jenkins, Stuart; Lynch, John; Smith, MatthewEnsuring the environmental integrity of internationally transferred mitigation outcomes, whether through offset arrangements, a market mechanism or non-market approaches, is a priority for the implementation of Article 6 of the Paris Agreement. Any conventional transferred mitigation outcome, such as an offset agreement, that involves exchanging greenhouse gases with different lifetimes can increase global warming on some timescales. We show that a simple "do no harm" principle regarding the choice of metrics to use in such transactions can be used to guard against this, noting that it may also be applicable in other contexts such as voluntary and compliance carbon markets. We also show that both approximate and exact "warming equivalent" exchanges are possible, but present challenges of implementation in any conventional market. Warming-equivalent emissions may, however, be useful in formulating warming budgets in a two-basket approach to mitigation and in reporting contributions to warming in the context of the global stocktake.Item Open Access Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets(Springer Nature, 2022-01-28) Allen, Myles R.; Peters, Glen P.; Shine, Keith P.; Azar, Christian; Balcombe, Paul; Boucher, Olivier; Cain, Michelle; Ciais, Philippe; Collins, William; Forster, Piers M.; Frame, Dave J.; Friedlingstein, Pierre; Fyson, Claire; Gasser, Thomas; Hare, Bill; Jenkins, Stuart; Hamburg, Steven P.; Johansson, Daniel J. A.; Lynch, John; Macey, Adrian; Morfeldt, Johannes; Nauels, Alexander; Ocko, Ilissa; Oppenheimer, Michael; Pacala, Stephen W.; Pierrehumbert, Raymond; Rogelj, Joeri; Schaeffer, Michiel; Schleussner, Carl F.; Shindell, Drew; Skeie, Ragnhild B.; Smith, Stephen M.; Tanaka, KatsumasaItem Open Access Methane and the Paris Agreement temperature goals(Royal Society of Chemistry, 2021-12-06) Cain, Michelle; Jenkins, Stuart; Allen, Myles R.; Lynch, John; Frame, David J.; Macey, Adrian H.; Peters, Glen P.Meeting the Paris Agreement temperature goal necessitates limiting methane (CH4)-induced warming, in addition to achieving net-zero or (net-negative) carbon dioxide (CO2) emissions. In our model, for the median 1.5°C scenario between 2020 and 2050, CH4 mitigation lowers temperatures by 0.1°C; CO2 increases it by 0.2°C. CO2 emissions continue increasing global mean temperature until net-zero emissions are reached, with potential for lowering temperatures with net-negative emissions. By contrast, reducing CH4 emissions starts to reverse CH4-induced warming within a few decades. These differences are hidden when framing climate mitigation using annual ‘CO2-equivalent’ emissions, including targets based on aggregated annual emission rates. We show how the different warming responses to CO2 and CH4 emissions can be accurately aggregated to estimate warming by using ‘warming-equivalent emissions', which provide a transparent and convenient method to inform policies and measures for mitigation, or demonstrate progress towards a temperature goal. The method presented (GWP*) uses well-established climate science concepts to relate GWP100 to temperature, as a simple proxy for a climate model. The use of warming-equivalent emissions for nationally determined contributions and long-term strategies would enhance the transparency of stocktakes of progress towards a long-term temperature goal, compared to the use of standard equivalence methods. This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.