Browsing by Author "Manning, David A. C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: a case study for Sao Paulo State, Brazil(Elsevier, 2019-06-11) Lefebvre, David; Goglio, Pietro; Williams, Adrian; Manning, David A. C.; de Azevedo, Antonio Carlos; Bergmann, Magda; Meersmans, Jeroen; Smith, PeteEnhanced silicate rock weathering for long-term carbon dioxide sequestration has considerable potential, but depends on the availability of suitable rocks coupled with proximity to suitable locations for field application. In this paper, we investigate the established mining industry that extracts basaltic rocks for construction from the Paraná Basin, Sao Paulo State, Brazil. Through a Life Cycle Assessment, we determine the balance of carbon dioxide emissions involved in the use of this material, the relative contribution of soil carbonation and enhanced weathering, and the potential carbon dioxide removal of Sao Paulo agricultural land through enhanced weathering of basalt rock. Our results show that enhanced weathering and carbonation respectively emit around 75 and 135 kg carbon dioxide equivalent per tonne of carbon dioxide equivalent removed (considering a quarry to field distance of 65 km). We underline transportation as the principal process negatively affecting the practice and uncover a limiting road travel distance from the quarry to the field of 540 ± 65 km for carbonation and 990 ± 116 km for enhanced weathering, above which the emissions offset the potential capture. Regarding Sao Paulo State, the application of crushed basalt at 1 t/ha to all of the State's 12 million hectares of agricultural land could capture around 1.3 to 2.4 Mt carbon dioxide equivalent through carbonation and enhanced weathering, respectively. This study suggests a lower sequestration estimate than previous studies and emphasizes the need to consider all process stages through a Life Cycle Assessment methodology, to provide more reliable estimates of the sequestration potential of greenhouse gas removal technologies.Item Open Access Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology(Wiley, 2019-09-18) Sykes, Alasdair J.; Macleod, Michael; Eory, Vera; Rees, Robert M.; Payen, Florian; Myrgiotis, Vasilis; Williams, Mathew; Sohi, Saran; Hillier, Jon; Moran, Dominic; Manning, David A. C.; Goglio, Pietro; Seghetta, Michele; Williams, Adrian; Harris, Jim A.; Dondini, Marta; Walton, Jack; House, Joanna; Smith, PeteTo limit warming to well below 2°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability, and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policy makers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multi‐disciplinary summary of the barriers and potential incentives toward practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level, and an uptake rate compatible with global impact. These focus on: a. optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation) b. reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till) c. minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction) d. addition of C produced outside the system (e.g. organic manure amendments, biochar addition) e. provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping) We then consider economic and non‐cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems.