Browsing by Author "Martin, Benjamin D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Ammonia removal from thermal hydrolysis dewatering liquors via three different deammonification technologies(Elsevier, 2020-10-06) Ochs, Pascal; Martin, Benjamin D.; Germain, Eve; Stephenson, Tom; van Loosdrecht, Mark C. M.; Soares, AnaThe benefits of deammonification to remove nitrogen from sidestreams, i.e., sludge dewatering liquors, in municipal wastewater treatment plants are well accepted. The ammonia removal from dewatering liquors originated from thermal hydrolysis/anaerobic digestion (THP/AD) are deemed challenging. Many different commercial technologies have been applied to remove ammonia from sidestreams, varying in reactor design, biomass growth form and instrumentation and control strategy. Four technologies were tested (a deammonification suspended sludge sequencing batch reactor (S-SBR), a deammonification moving bed biofilm reactor (MEDIA), a deammonification granular sludge sequencing batch reactor (G-SBR), and a nitrification suspended sludge sequencing batch reactor (N-SBR)). All technologies relied on distinct control strategies that actuated on the feed flow leading to a range of different ammonia loading rates. Periods of poor performance were displayed by all technologies and related to imbalances in the chain of deammonification reactions subsequently effecting both load and removal. The S-SBR was most robust, not presenting these imbalances. The S-SBR and G-SBR presented the highest nitrogen removal rates (NRR) of 0.58 and 0.56 kg N m−3 d−1, respectively. The MEDIA and the N-SBR presented an NRR of 0.17 and 0.07 kg N m−3 d−1, respectively. This study demonstrated stable ammonia removal from THP/AD dewatering liquors and did not observe toxicity in the nitrogen removal technologies tested. It was identified that instrumentation and control strategy was the main contributor that enabled higher stability and NRR. Overall, this study provides support in selecting a suitable biological nitrogen removal technology for the treatment of sludge dewatering liquors from THP/ADItem Open Access Evaluation of a full-scale suspended sludge deammonification technology coupled with an hydrocyclone to treat thermal hydrolysis dewatering liquors(MDPI, 2021-02-01) Ochs, Pascal; Martin, Benjamin D.; Germain, Eve; Wu, Zhuoying; Lee, Po-Heng; Stephenson, Tom; van Loosdrecht, Mark C. M.; Soares, AnaSuspended sludge deammonification technologies are frequently applied for sidestream ammonia removal from dewatering liquors resulting from a thermal hydrolysis anaerobic digestion (THP/AD) process. This study aimed at optimizing the operation, evaluate the performance and stability of a full-scale suspended sludge continuous stirred tank reactor (S-CSTR) with a hydrocyclone for anaerobic ammonia oxidizing bacteria (AMX) biomass separation. The S-CSTR operated at a range of nitrogen loading rates of 0.08–0.39 kg N m−3 d−1 displaying nitrogen removal efficiencies of 75–89%. The hydrocyclone was responsible for retaining 56–83% of the AMX biomass and the washout of ammonia oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was two times greater than AMX. The solid retention time (SRT) impacted on NOB washout, that ranged from 0.02–0.07 d−1. Additionally, it was demonstrated that an SRT of 11–13 d was adequate to wash-out NOB. Microbiome analysis revealed a higher AMX abundance (Candidatus scalindua) in the reactor through the action of the hydrocyclone. Overall, this study established the optimal operational envelope for deammonification from THP/AD dewatering liquors and the role of the hydrocyclone towards maintaining AMX in the S-CSTR and hence obtain process stability.Item Open Access Quantifying the performance of a hybrid anion exchanger/adsorbent for phosphorus removal using mass spectrometry coupled with batch kinetic trials(Taylor and Francis, 2017-07-20) Martin, Benjamin D.; De Kock, Lueta-Ann; Gallot, Maxime; Guery, Elodie; Stanowski, Sylvain; MacAdam, Jitka; McAdam, Ewan J.; Parsons, Simon A.; Jefferson, BruceIncreasingly stricter phosphorus discharge limits represent a significant challenge for the wastewater industry. Hybrid media comprising anionic exchange resins with dispersions of hydrated ferric oxide nanoparticles have been shown to selectively remove phosphorus from wastewaters, and display greater capacity and operational capability than both conventional treatment techniques and other ferric-based adsorbent materials. Spectrographic analyses of the internal surfaces of a hybrid media during kinetic experiments show that the adsorption of phosphorus is very rapid, utilising 54% of the total capacity of the media within the first 15 min and 95% within the first 60 min. These analyses demonstrate the importance of intraparticle diffusion on the overall rate in relation to the penetration of phosphorus. Operational capacity is a function of the target effluent phosphorus concentration and for 0.1 mg P L−1, this is , which is 8–13% of the exhaustive capacity. The adsorbed phosphorus can be selectively recovered, offering a potential route to recycle this important nutrient. The main implication of the work is that the ferric nanoparticle adsorbent can provide a highly effective means of achieving a final effluent phosphorus concentration of 0.1 mg P L−1, even when treating sewage effluent at 5 mg P L−1.