CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Masood, Tariq"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Augmented reality assisted calibration of digital twins of mobile robots
    (Elsevier, 2020-12-18) Williams, Richard; Erkoyuncu, John Ahmet; Masood, Tariq; Vrabič, Rok
    In this age of globalisation and digitalisation, industry is evolving from a physical space information flow towards a two-way communication between virtual and physical space. The challenge that this research aims to resolve is: ‘how can a virtual system adjust itself to the constantly changing conditions of the physical space of information that influences the operational dynamics of maintenance in industry?’. This article presents an augmented reality (AR) assisted digital twin (DT) solution that can be used to calibrate mobile robots in maintenance environments. This DT solution was achieved by providing the user the ability to predict the battery charge of the mobile robot by using historic data as the input and providing the user a visual representation of the mobile robot’s movements using an AR device as a medium to display this digital data. Overall, the trial demonstration was a success in implementing a DT to calibrate a mobile robot with AR assistance. Therefore, this DT solution can be implemented into niche areas of industrial environments. With the capability of predicting the battery charge enabling the user to know when the mobile robot will be empty, the user can maximise its use before recalling it for the charge. This would improve the accuracy of scheduling when mobile robots can be deployed and maximise the utilization of the robot and reduce the running cost of mobile robots in the long term
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enterprise systems’ life cycle in pursuit of resilient smart factory for emerging aircraft industry: a synthesis of Critical Success Factors’(CSFs), theory, knowledge gaps, and implications
    (Taylor & Francis, 2017-01-31) Rashid, Asif; Masood, Tariq; Erkoyuncu, John Ahmet; Tjahjono, Benny; Khan, N.; Shami, M.
    The research aims to investigate business value critical success factors (CSFs) of enterprise systems (ES) through their life cycle in pursuit of resilient smart factory for emerging aircraft industry. This article provides an extensive literature analysis of past 22 years based on conscientious criteria of authors: (i) who have published strategic content relevant to CSFs, (ii) received more than 300 citations and (iii) concurrently published two or more papers relevant to ES CSFs. The most cited strategic CSFs were termed as classical CSFs. The 22 CSFs were identified, validated and synthesised for better understanding of success across life cycle by aircraft industry experts. The top 10 empirically verified CSFs have numerous differences with past generic classical CSFs. This article canvases real insights of two distinct views: process and variance approaches of the ES CSFs. The process approach, which is a neglected research area, facilitates the researchers for identification of ES life cycle process coupled with a view of resource deployment when it is needed the most. While the variance approach facilitates practitioners and researchers in finding out which resource (CSF) is relatively more important. The significant findings for ES life cycle can help the practitioners and researchers to make rational decisions throughout the ES life cycle.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback