CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "McNeil, C. Y."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Efficient upwind algorithms for solution of the Euler and Navier-stokes equations
    (Cranfield University, 1995-10) McNeil, C. Y.; Roe, P. L.; Qin, N.
    An efficient three-dimensionasl tructured solver for the Euler and Navier-Stokese quations is developed based on a finite volume upwind algorithm using Roe fluxes. Multigrid and optimal smoothing multi-stage time stepping accelerate convergence. The accuracy of the new solver is demonstrated for inviscid flows in the range 0.675 :5M :5 25. A comparative grid convergence study for transonic turbulent flow about a wing is conducted with the present solver and a scalar dissipation central difference industrial design solver. The upwind solver demonstrates faster grid convergence than the central scheme, producing more consistent estimates of lift, drag and boundary layer parameters. In transonic viscous computations, the upwind scheme with convergence acceleration is over 20 times more efficient than without it. The ability of the upwind solver to compute viscous flows of comparable accuracy to scalar dissipation central schemes on grids of one-quarter the density make it a more accurate, cost effective alternative. In addition, an original convergencea cceleration method termed shock acceleration is proposed. The method is designed to reduce the errors caused by the shock wave singularity M -+ 1, based on a localized treatment of discontinuities. Acceleration models are formulated for an inhomogeneous PDE in one variable. Results for the Roe and Engquist-Osher schemes demonstrate an order of magnitude improvement in the rate of convergence. One of the acceleration models is extended to the quasi one-dimensiona Euler equations for duct flow. Results for this case d monstrate a marked increase in convergence with negligible loss in accuracy when the acceleration procedure is applied after the shock has settled in its final cell. Typically, the method saves up to 60% in computational expense. Significantly, the performance gain is entirely at the expense of the error modes associated with discrete shock structure. In view of the success achieved, further development of the method is proposed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback