CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Meng, Fanyu"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microbial electrochemical enhanced composting of sludge and kitchen waste: electricity generation, composting efficiency and health risk assessment for land use
    (Elsevier, 2024-08-15) Hu, Tengteng; Lin, Yunhan; Liu, Yingyu; Zhao, Qingliang; Yu, Hang; Yang, Zhugen; Meng, Fanyu
    To realize the energy and resource utilization from organic solid waste, a two-phase microbial desalination cell (TPMDC) was constructed using dewatered sludge and kitchen waste as the anode substrate. The performance of electricity generation and composting efficacy was investigated, along with a comprehensive assessment of the potential health risks associated with the land use of the resulting mixed compost products. Experimental outcomes revealed a maximum open-circuit voltage of 0.893 ± 0.005 V and a maximum volumetric power density of 0.797 ± 0.009 W/m³. After 90 days of composting enhanced by microbial electrochemistry, a significant organic matter removal rate of 31.13 ± 0.44 % was obtained, and the anode substrate electric conductivity was reduced by 30.02 ± 0.04 % based on the anode desalination. Simultaneously, there was an increase in the content of available nitrogen, phosphorus, and potassium, as well as an improvement in the seed germination index. The forms of heavy metals shifted from bioavailable to stable residual states. The non-carcinogenic hazard index (HI) values for heavy metals and polycyclic aromatic hydrocarbons (PAHs) during the land use of compost products were less than 1, and the total carcinogenic risk (TCR) values for heavy metals and PAHs were below the acceptable threshold of 10−4. The occupational population risk of infection from five pathogens was higher than that of the general public, with all risk values ranging from 8.67 × 10−8 to 1, where the highest risk was attributed to occupational exposure to Legionella. These outcomes demonstrated that the mixture of dewatered sludge and kitchen waste was an appropriate anode substrate to enhance TPMDC stability for electricity generation, and its compost products have promising land use suitability and acceptable land use risk, which will provide important guidance for the safe treatment and disposal of organic solid waste.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Synergistic air pollution exposure elevates depression risk: a cohort study
    (Elsevier, 2025-01) Hao, Yuqing; Xu, Longzhu; Peng, Meiyu; Yang, Zhugen; Wang, Weiqi; Meng, Fanyu
    Depression is a leading mental health disorder worldwide, contributing substantially to the global disease burden. While emerging evidence suggests links between specific air pollutants and depression, the potential interactions among multiple pollutants remain underexplored. Here we show the influence of six common air pollutants on depressive symptoms among middle-aged and older Chinese adults. In single-pollutant models, a 10 μg m−3 increase in SO2, CO, PM10, and PM2.5 is associated with increased risks of depressive symptoms, with odds ratios (95% confidence intervals) of 1.276 (1.238–1.315), 1.007 (1.006–1.008), 1.066 (1.055–1.078), and 1.130 (1.108–1.153), respectively. In two-pollutant models, SO2 remains significantly associated with depressive symptoms after adjusting for other pollutants. Multi-pollutant models uncover synergistic effects, with SO2, CO, NO2, PM10, and PM2.5 exhibiting significant interactions, identifying SO2 as the primary driver of these associations. Mediation analyses further indicate that cognitive and physical impairments partially mediate the relationship between air pollution and depressive symptoms. These findings underscore the critical mental health impacts of air pollution and highlight the need for integrated air quality management strategies. Targeted mitigation of specific pollutants, particularly SO2, is expected to significantly enhance public mental health outcomes.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback