Browsing by Author "Moon, I. S."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Electrochemically generated bimetallic reductive mediator Cu1+ [Ni2+ (CN) 4] 1− for the degradation of CF4 to ethanol by electro-scrubbing(SAGE, 2018-10-10) Muthuraman, G.; Ramu, A. G.; Cho, Y-H; McAdam, Ewan J.; Moon, I. S.Remediation of electronic gas CF4 using commercially available technologies results in another kind of greenhouse gas and corrosive side products. This investigation aimed to develop CF4 removal at room temperature with formation of useful product by attempting an electrogenerated Cu1+[Ni2+(CN)4]1− mediator. The initial electrolysis of the bimetallic complex at the anodized Ti cathode demonstrated Cu1+[Ni2+(CN)4]1− formation, which was confirmed by additional electron spin resonance results. The degradation of CF4 followed mediated electrochemical reduction by electrogenerated Cu1+[Ni2+(CN)4]1−. The removal efficiency of CF4 of 95% was achieved by this electroscrubbing process at room temperature. The spectral results of online and offline Fourier transform infrared analyzer, either in gas or in solution phase, demonstrated that the product formed during the removal of CF4 by electrogenerated Cu1+[Ni2+(CN)4]1− by electroscrubbing was ethanol (CH3CH2OH), with a small amount of trifluoroethane (CF3CH3) intermediate.Item Open Access Recovery and concentration of ammonia from return liquor to promote enhanced CO2 absorption and simultaneous ammonium bicarbonate crystallisation during biogas upgrading in a hollow fibre membrane contactor(Elsevier, 2020-01-27) Bavarella, Salvatore; Hermassi, Mehrez; Brookes, Adam; Moore, Andrew; Vale, Peter C. J.; Moon, I. S.; Pidou, Marc; McAdam, EwanIn this study, thermal desorption was developed to separate and concentrate ammonia from return liquor, for use as a chemical absorbent in biogas upgrading, providing process intensification and the production of crystalline ammonium bicarbonate as the final reaction product. Applying modest temperature (50°C) in thermal desorption suppressed water vapour pressure and increased selective transport for ammonia from return liquor (0.11MNH3) yielding a concentrated condensate (up to 1.7MNH3). Rectification was modelled through second-stage thermal processing, where higher initial ammonia concentration from the first stage increased mass transfer and delivered a saturated ammonia solution (6.4MNH3), which was sufficient to provide chemically enhanced CO2 separation and the simultaneous initiation of ammonium bicarbonate crystallisation, in a hollow fibre membrane contactor. Condensate recovered from return liquor exhibited a reduction in surface tension. We propose this is due to the stratification of surface active agents at the air-liquid interface during primary-stage thermal desorption which carried over into the condensate, ‘salting’ out CO2 and lowering the kinetic trajectory of absorption. However, crystal induction (the onset of nucleation) was comparable in both synthetic and thermally recovered condensates, indicating the thermodynamics of crystallisation to be unaffected by the recovered condensate. The membrane was evidenced to promote heterogeneous primary nucleation, and the reduction in the recovered condensate surface tension was shown to exacerbate nucleation rate, due to the reduction in activation energy. X-ray diffraction of the crystals formed, showed the product to be ammonium bicarbonate, demonstrating that thermal desorption eliminates cation competition (e.g. Ca2+) to guarantee the formation of the preferred crystalline reaction product. This study identifies an important synergy between thermal desorption and membrane contactor technology that delivers biogas upgrading, ammonia removal from wastewater and resource recovery in a complimentary process.Item Open Access Sustainable degradation of carbon tetrafluoride to non-corrosive useful products by incorporating reduced electron mediator within electro-scrubbing(Elsevier, 2018-02-21) Muthuraman, G.; Ramu, A. G.; Cho, Y. H.; McAdam, Ewan; Moon, I. S.The degradation of CF4 gas using existing technologies produces other types of greenhouse gas (CO2) and corrosive side products. The main aim of this study is to degrade CF4 gas at room temperature into useful products without producing corrosive side products by mediated electrochemical reduction (MER) process using an electrogenerated Cu1+[Ni2+(CN)4]1− mediator. Initial studies on the electrolytic reduction of the hetero-bimetallic complex in catholyte solution at anodized Ti cathode was monitored by oxidation/reduction potential (ORP) variation whether the Cu2+ or Ni2+ was reduced in the Cu2+[Ni2+(CN)4] and confirmed by electron spin resonance (ESR) spectroscopy the Cu1+[Ni2+(CN)4]1− formation. The concentration variation of Cu1+[Ni2+(CN)4]1− during CF4 injection demonstrated the degradation of CF4 followed the MER by electrogenerated Cu1+[Ni2+(CN)4]1−. Maximum removal efficiency of CF4 using electroscrubbing process was 96% at room temperature. Through the variation in gas phase parameters, the gas phase mass transfer coefficient was calculated that can facilitate scale up the developed process. Fourier transform infrared spectroscopy analysis in both the gas and solution phases showed that CH3CH2OH was the main product that formed during the removal of CF4 by electrogenerated Cu1+[Ni2+(CN)4]1− at electroscrubber along with a small amount of CF3CH3 intermediate. Importantly, this mechanism also avoided formation of the corrosive product HF.Item Open Access Sustainable removal of N2O by mediated electrocatalytic reduction at ambient temperature electro-scrubbing using electrogenerated Ni(I) electron mediator(Elsevier, 2019-06-12) Muthuraman, G.; Ramu, A. G.; McAdam, Ewan J.; Moon, I. S.Direct catalysis is generally proposed for nitrous oxide (N2O) abatement but catalysis is expensive, requires high temperatures, and suffers from media fouling, which limits its lifetime. In the present study, an ambient temperature electroscrubbing method was developed, coupling wet-scrubbing with an electrogenerated Ni(I) ([Ni(I)(CN)4]3−) mediator, to enable N2O reduction in a single process stage. The initial studies of 10 ppm N2O absorption into 9 M KOH and an electrolyzed 9 M KOH solution showed no removal. However, 95% N2O removal was identified through the addition of Ni(I) to an electrolyzed 9 M KOH. A change in the oxidation/reduction potential from −850 mV to −650 mV occurred following a decrease in Ni(I) concentration from 4.6 mM to 4.0 mM, which confirmed that N2O removal was mediated by an electrocatalytic reduction (MER) pathway. Online analysis identified the reaction product to be ammonia (NH3). Increasing the feed N2O concentration increased NH3 formation, which suggests that a decrease in electrolyzed solution reactivity induced by the increased N2O load constrained the side reaction with the carrier gas. Importantly, this study outlines a new regenerable method for N2O removal to commodity product NH3 at ambient temperature that fosters process intensification, overcomes the limitations generally observed with catalysis, and permits product transformation to NH3.