Browsing by Author "Mori, Stefano"
Now showing 1 - 15 of 15
Results Per Page
Sort Options
Item Open Access An approach to evaluating the impact of contaminants on flux deposition in gas turbines(Springer, 2023-08-18) Mori, Stefano; Mendil, Mathilde; Wells, Jonathan; Chapman, Neil; Simms, Nigel; Wells, Roger; Sumner, JoyGas turbines are a key part of many countries’ power generation portfolios, but components such as blades can suffer from hot corrosion attack, which can decrease component lifetimes. Corrosion is driven by impurity levels in the fuel and air (e.g., species containing sulphur and/or alkali metals) and depends on environmental conditions (e.g., air pollution, seawater droplets), that can lead to formation of harmful species in the gas. Understanding and determining the deposition flux of such contaminants is crucial for understanding the problem. Thermodynamic simulations were used to determine types and amounts of potentially corrosive contaminants, this was followed by deposition fluxes calculations. An operating scenario, based upon an offshore platform was evaluated. The effectiveness of different filtration systems has been evaluated. The impurity levels of alkali metals, such as sodium, greatly impacts the calculated deposition flux of species linked to corrosion attack. The presence of Na2SO4, and K2SO4 was found, at temperature representative of stage 2 nozzle guide vanes. Lowering sulphur input (from fuel or air) can be an efficient way to decrease deposition, attention must also be paid to lowering the amount of alkali metal entering the gas turbine, which can be lowered by the filtration systems’ correct use.Item Open Access Approaches to modelling fireside corrosion of superheater / reheater tubes in coal and biomass fired combustion power plants(ASM International, 2019-10-24) Simms, Nigel J.; Ekpe, Blessing; Riccio, Chiara; Mori, Stefano; Sumner, Joy; Oakey, John E.The combustion of coal and biomass fuels in power plants generates deposits on the surfaces of superheater / reheater tubes that can lead onto fireside corrosion. This type of materials degradation can limit the lives of such tubes in the long term, and better methods are needed to produce predictive models for such damage. This paper reports on four different approaches that are being investigated to tackle the challenge of modelling fireside corrosion damage on superheaters / reheaters: (a) CFD models to predict deposition onto tube surfaces; (b) generation of a database of available fireside corrosion data; (c) development of mechanistic and statistically based models of fireside corrosion from laboratory exposures and dimensional metrology; (d) statistical analysis of plant derived fireside corrosion datasets using multi-variable statistical techniques, such as Partial Least Squares Regression (PLSR). An improved understanding of the factors that influence fireside corrosion is resulting from the use of a combination of these different approaches to develop a suite of models for fireside corrosion damage.Item Open Access Causal discovery to understand hot corrosion(Wiley, 2024-12) Varghese, Akhil; Arana-Catania, Miguel; Mori, Stefano; Encinas-Oropesa, Adriana; Sumner, JoyGas turbine superalloys experience hot corrosion, driven by factors including corrosive deposit flux, temperature, gas composition, and component material. The full mechanism still needs clarification and research often focuses on laboratory work. As such, there is interest in causal discovery to confirm the significance of factors and identify potential missing causal relationships or codependencies between these factors. The causal discovery algorithm fast causal inference (FCI) has been trialled on a small set of laboratory data, with the outputs evaluated for their significance to corrosion propagation, and compared to existing mechanistic understanding. FCI identified salt deposition flux as the most influential corrosion variable for this limited data set. However, HCl was the second most influential for pitting regions, compared to temperature for more uniformly corroding regions. Thus, FCI generated causal links aligned with literature from a randomised corrosion data set, while also identifying the presence of two different degradation modes in operation.Item Open Access Citric acid aerospace stainless steel passivation: a green approach(Unknown, 2015-09) Bragaglia, Mario; Cherubini, Valeria; Cacciotti, Ilaria; Rinaldi, Marianna; Mori, Stefano; Soltani, P.; Nanni, F.; Kaciulis, S.; Montesperelli, G.Passivation is a common treatment to maximize the corrosion resistance of stainless steel. Nitric acid is generally used and involves several ecological problems, citric acid could be a promising and environmentally friendly alternative to nitric acid. In this work citric acid has been extracted from lemon waste using and eco- friendly procedure. The stainless steel samples have been treated in both nitric and citric acid (commercial and extracted) and corrosion test have been performed. The results show how citric acid can be used as substitute of nitric acid in passivation treatment.Item Open Access Corrosion of potential first stage blade materials in simulated supercritical CO2(Taylor and Francis, 2023-05-04) Norman, Boma Phoebe; Al Baroudi, Hisham; Potter, Andrew; Mori, Stefano; Simms, Nigel; Kulkarni, Anand; Sumner, JoyGlobal power consumption is predicted to double by 2050, notably driven by the transportation and energy sectors necessitating limitations of emissions. Due to its compact turbomachinery, better thermal efficiency, and simpler layout, supercritical-CO2 cycles have received attention, with numerous variations proposed (either indirect-fired/closed cycles or direct-fired-open cycles). One technical challenge is degradation pathway quantification of turbine materials in sCO2 as selection is crucial to successfully and economically operate new plants. This requires degradation assessment in representative environments simulating the Allam cycle. Laboratory tests were conducted on a first stage turbine blade alloy, CM247, with either an environmentally resistant coating or bond coat/thermal barrier coat at one atmosphere and 800°C, with potential exposure including (O2, H2O, N2, SO2) for up to 1000 h. Weight change and metallographic measurements tracked scale development. Scanning electron microscopy/energy dispersive X-ray spectroscopy studied scales and internal precipitates. Locations of contaminant element in the CO2-rich environment were investigated.Item Open Access Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging(Elsevier, 2018-02-03) Cacciotti, Ilaria; Mori, Stefano; Cherubini, Valeria; Nanni, FrancescaIn the food packaging sector many efforts have been (and are) devoted to the development of new materials in order to reply to an urgent market demand for green and eco-sustainable products. Particularly a lot of attention is currently devoted both to the use of compostable and biobased polymers as innovative and promising alternative to the currently used petrochemical derived polymers, and to the re-use of waste materials coming from agriculture and food industry. In this work, multifunctional eco-sustainable systems, based on poly(lactic acid) (PLA) as biopolymeric matrix, diatomaceous earth as reinforcing filler and spent coffee grounds extract as oxygen scavenger, were produced for the first time, in order to provide a simultaneous improvement of mechanical and gas barrier properties. The influence of the diatomite and the spent coffee grounds extract on the microstructural, mechanical and oxygen barrier properties of the produced films was deeply investigated by means of X-Ray diffraction (XRD), infrared spectroscopy (FT-IR, ATR), scanning electron microscopy (SEM), uniaxial tensile tests, O2 permeabilimetry measurements. An improvement of both mechanical and oxygen barrier properties was recorded for systems characterised by the co-presence of diatomite and coffee grounds extract, suggesting a possible synergic effect of the two additives.Item Open Access Effect of dissolved CO2 on the interaction of stress and corrosion for pipeline carbon steels in simulated marine environments(MDPI, 2023-06-22) Abubakar, Shamsuddeen Ashurah; Mori, Stefano; Sumner, JoyOffshore pipelines are subjected to stresses (e.g., from fluid flow, mechanical vibration, and earth movement). These stresses, combined with corrosive environments and in the presence of trace gases (O2, CO2), can increase the pipeline’s corrosion rate and potentially lead to cracking. As such, the impact of trace gases such as CO2 (linked to enhanced oil recovery and carbon capture and sequestration) on corrosion is key to determining whether pipelines are at increased risk. American Petroleum Institute (API) 5L X70 and X100 were exposed as stressed C-rings (80% or 95% of yield strength). The tests were conducted with either N2 (control) or CO2 bubbled through 3.5% NaCl, at either 5 °C or 25 °C. Linear polarization resistance was used to assess corrosion rate, while morphology and variation were determined using optical microscopy (generating metal loss distributions) and scanning electron microscopy. The control experiment (N2) showed that corrosion rates correlated with temperature and stress. In this low O2 environment, both alloys showed similar trends. Under CO2 exposure, all samples showed accelerated corrosion rates; furthermore, the morphologies generated were different for the two alloys: undercutting corrosion with discontinuous microcracks (X70) or deep, wide ellipses (X100). Understanding these changes in corrosion response is key when selecting materials for specific operational environments.Item Open Access Fireside and steamside performance in biomass power plant(Taylor & Francis, 2022-01-10) Mori, Stefano; Sumner, Joy; Bouvet, Justin; Simms, Nigel J.To address the challenge of climate change, the energy sector is developing novel strategies to reduce greenhouse gas emissions. One route is to increase steam temperatures and pressures (above 650°C and 350 bar). Another route is the use of potential net zero emissions fuels, like biomass. Both these routes cause issues for the heat-exchanger materials due to the differences in composition of the combustion environments generated, compared to coal. This paper characterises candidate superheater/reheater alloys’ behaviour (Sanicro 25 and IN740) at 700°C. 1,000 h fireside and 10,000 h steamside exposures were carried out, the first using ‘deposit recoat’ techniques. Sample cross-sections were analysed using dimensional metrology and SEM/EDX. Fireside results for Sanicro 25 showed degradation throughout the samples’ thicknesses. In steamside exposures, Sanicro 25 formed a Cr-rich scale, and Nb rich particles (z-phase). IN740 showed lower metal and sound metal damage than Sanicro 25 for fireside and steam oxidation exposures.Item Open Access Fireside corrosion and deposition on heat exchangers in biomass combustion systems(Taylor and Francis, 2022-10-31) Mori, Stefano; Sanusi, Toyin; Simms, Nigel; Sumner, JoyTo address climate change, power plants need to switch to greener fuels. One possible fuel is biomass; a carbon neutral/low carbon fuel. However biomasses’ chemistries are both different from coal’s and vary depending on their sources, containing unique levels of the trace elements (e.g., Cl and S) capable of altering the degradation of heat-exchangers. As such, an understanding of the effects of these variations on fireside corrosion is needed. Laboratory testing exposed alloys T91 and TP347HFG in a simulated agricultural product combustion environment at 600°C (up to 1000h; 100h cycles). Three different deposits mixtures were investigated (comprised of KCl, K2SO4, Na2SO4, CaSO4 indifferent percentages) mimicking accelerated corrosion from different biomasses. Corrosion behaviour was found to be dependant on both alloy and deposit chemistries, with the two materials showing different responses. The deposit with lowest KCl showed lowest corrosion damage, while the highest KCl deposit showed more aggressive behaviour.Item Open Access Fireside corrosion of heat exchanger materials for advanced solid fuel fired power plants(Springer, 2021-12-18) Mori, Stefano; Pidcock, Andy; Sumner, Joy; Simms, Nigel; Oakey, JohnTo address the challenge of climate change, future energy systems need to have reduced greenhouse gas emissions and increased efficiencies. For solid fuel fired combustion plants, one route towards achieving this is to increase the system’s steam temperatures and pressures. Another route is to co-fire renewable fuels (such as biomass) with coals. Fireside corrosion performance of two candidate superheater/reheater alloys has been characterised at higher heat exchanger surface temperature. Samples of the alloys (a stainless steel, Sanicro 25 and a nickel-based alloy, IN740) were exposed in fireside corrosion tests at 650 °C, 700 °C and 750 °C, in controlled atmosphere furnaces using the ‘deposit recoat’ test method to simulate superheater/reheater exposure for 1000 h. After exposure, the samples were analysed using dimensional metrology to determine the extent and distributions of corrosion damage in terms of surface recession and internal damage. At 650 °C, the stainless steel and nickel-based alloy performed similarly, while at 700 °C and above, the median damage to the steel was at least 3 times greater than for the nickel-based alloy. Optical and electronic microscopy studies were used to study samples’ damage morphologies after exposure. Intergranular damage and pits were found in sample cross sections, while chromium depletion was found in areas with internal damage. For high-temperature applications, the higher cost of the nickel-based alloy could be offset by the longer life they would allow in plant with higher operating temperatures.Item Open Access Fireside performance of different coatings in biomass power plant(Taylor & Francis, 2023-03-12) Mori, Stefano; Pidcock, Andy; Sumner, Joy; Simms, Nigel; Oakey, JohnThe energy sector will need to employ novel strategies to reduce greenhouse gas emissions, such as the increase of steam temperatures/pressures or the use of low carbon fuels (i.e. biomass). Both cause heat exchanger materials’ degradation issues, due to the formation of more/different corrosive deposits, which requires the use of expensive nickel-based materials or coatings. This paper focuses on the behaviour of three different coatings (HVOF NiCrFeSi, laser clad FeCrAl and Laser Clad NiCrFeSi) deposited on TP347HFG, at 700°C (up to 1000 h exposure). Tests were performed using the ‘deposit recoat’ method (KCl deposit) in simulated biomass combustion environments. Cross-sections were analysed using dimensional metrology, to determine distributions of metal loss and internal damage. Intergranular damage and pits were identified using SEM/EDX. A ‘diffusion cell’ behaviour was observed, which led to depletion of alloying elements from the coating and consequent increase in damage. The results suggested a severe degradation of all coatings.Item Open Access High temperature corrosion of HVOF coatings in laboratory-simulated biomass combustion superheater environments(Springer, 2022-12-26) Pidcock, Andy; Mori, Stefano; Sumner, Joy; Simms, Nigel; Nicholls, John; Oakey, JohnThis study examines the fireside corrosion of FeCrAl, NiCr, NiCrAlY and A625 coatings applied by ‘high velocity oxy fuel’(HVOF) and exposed to simulated biomass firing conditions (gas composition CO2, N2, SO2 and HCl). The coatings and a typical base steel alloy (T92) were exposed to simulated conditions at 600 °C for 1000 h in a laboratory scale furnace. Samples were coated with a potassium chloride deposit. Samples were then cold mounted in a low-shrinkage epoxy resin and then cross-sectioned. Corrosion was assessed by dimensional metrology comparing the coating thickness change of the samples. The cross-sections of the ‘worst’ and ‘best’ coatings were examined. Results show that all but one coating (HVOF NiCr) outperformed the T92 alloy. No coating composition or method was conclusively better. Evidence of Cr depletion as well as the formation of a sulphidation layer have been found in the exposed samples with coatings. The formation of a K2SO4 layer has also been observed on all coated specimens.Item Open Access Hybrid ceramic self-healing coatings for corrosion protection of Al alloys in 3% NaCl solution(MDPI, 2023-10-10) Mori, Stefano; Lamastra, Francesca Romana; Montesperelli, GiampieroThis work focuses on the development of sol–gel self-healing coatings for corrosion protection of Al alloys. The use of this method will help to reduce the costs associated with the coating as well as their environmental impact. Coatings were made of a titania matrix loaded with microparticles of poly(vinyl-alcohol) (PVA) containing cerium nitrate as an inhibitor. The PVA particles dissolve in water, so that the cerium nitrate deposits on the Al surface subjected to corrosion. The PVA microspheres were made via the emulsion method, and then loaded with cerium nitrate. The amount of cerium nitrate loaded in the microspheres was evaluated using UV–Vis. As a second step, the titania coating with embedded PVA microspheres loaded with cerium nitrate was deposited on an AA6082 substrate via a sol–gel route. The corrosion resistance of the coated samples was tested in NaCl solution. The coating microstructure, before and after the corrosion tests, was analysed with the use of an SEM (scanning electron microscope) and EDS (energy dispersive spectroscopy), while the corrosion resistance was investigated by EIS (electrochemical impedance spectroscopy). The results showed that the coatings were uniform and compact. They also showed the ability of the hybrid TiO2-based coating to provide protection for the AA6082 from corrosion. The coatings with an induced defect (scratch) were also analysed, and the EIS analysis of the coatings over time showed an increase in resistance, confirming the ability of the coating to heal itself.Item Open Access Monitoring of stress corrosion cracking under representative pipeline conditions.(Cranfield University, 2023-10) Abubakar, Shamsuddeen Ashurah; Sumner, Joy; Mori, StefanoPipelines are subjected to various stresses during operation, which are induced from factors including fluid flow, ocean currents, mechanical vibrations, or earth movements. These stresses, in combination with the corrosive environment can cause an increase in pipeline’s corrosion rate and, subsequently, lead to stress corrosion cracking. The presence of trace gases (CO₂, O₂, H₂S), is expected to have an influence on this susceptibility. As such, the aim of the research is to access the impact of trace gases linked to CO₂transportation, carbon capture and storage, enhanced oil recovery and other pipeline operations. This is key to understanding whether pipelines are at increased risk of failure. In this research, the stress corrosion behaviour of API 5L X65, X70, X80 and X100 has been investigated. Tests were conducted in 3.5 % NaCl solution with either N₂, CO₂, or mixtures of O₂/N₂ and O₂/CO₂ bubbled through. Liquid temperatures were maintained at either at 5 ˚C, 15 ˚C or 25 ˚C. C-ring and 3-point bending specimens were stressed at 80 % or 95 % of yield strength. Linear polarization resistance monitored corrosion rates. Corrosion extent and morphology were examined by optical microscopy (to measure metal loss), followed by scanning electron microscopy analysis. The results from baseline experiment (N₂) showed correlations between corrosion rates and both stress and temperature. All samples exposed with mixed O₂/N₂ presented higher corrosion rates by 1 order of magnitude. Their damage morphology consisted of metal loss and pits features. These pits had deeper, elliptical morphology in comparison with N₂-only data. Results from the pure CO₂ gas showed more rapid corrosion rates than in pure N₂ and mixed O₂/N₂. However, with change in trace gas mixture from pure CO₂ to O₂/CO₂, a large increase in corrosion rates of about 70% was observed. Similar morphologies were observed on X65, X70 and X80 samples in solution with pure CO₂ and mixed O₂/CO₂ at all solution temperatures, with a deep undercutting morphology and discontinuous microcracks being observed. In contrast, X100 showed wide, deep ellipse-shaped pits.Item Open Access A review of factors affecting SCC initiation and propagation in pipeline carbon steels(MDPI, 2022-08-22) Abubakar, Shamsuddeen Ashurah; Mori, Stefano; Sumner, JoyPipelines have been installed and operated around the globe to transport oil and gas for decades. They are considered to be an effective, economic and safe means of transportation. The major concern in their operation is corrosion. Among the different forms of corrosion, stress corrosion cracking (SCC), which is caused by stresses induced by internal fluid flow or other external forces during the pipeline’s operation, in combined action with the presence of a corrosive medium, can lead to pipeline failure. In this paper, an extensive review of different factors affecting SCC of pipeline steels in various environmental conditions is carried out to understand their impact. Several factors such as temperature, presence of oxidizers (O2, CO2, H2S, etc.), composition and concentration of medium, pH, applied stress, and microstructure of the metal/alloy have been established to affect the SCC of pipeline steels. SCC susceptibility of a steel at a particular temperature strongly depends on the type and composition of the corrosive medium and microstructure. It was observed that pipeline steels with water quenched and quenched and tempered heat treatments, such as those that consist of acicular ferrite or bainitic ferrite grains, are more susceptible to SCC irrespective of solution type and composition. Applied stress, stress concentration and fluctuating stress facilitates SCC initiation and propagation. In general, the mechanisms for crack initiation and propagation in near-neutral solutions are anodic dissolution and hydrogen embrittlement.