Browsing by Author "Morris, Mike"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Building and Sustaining Learning Networks.(2003-06) Bessant, John; Barnes, Justin; Morris, Mike; Kaplinsky, RaphaelResearch suggests that there are a number of potential advantages to learning in some form of network which include being able to benefit from other’s experience, being able to reduce the risks in experimentation, being able to engage in challenging reflection and in making use of peer group support. Examples of such configurations can be found in regional clusters, in sector groupings, in heterogeneous groups sharing a common topic of interest, in user groups concerned with learning around a particular technology or application and in supply chain learning. Although there is clear potential in such shared learning and some evidence of its being achieved in a few cases it is clear that learning in such configurations does not take place automatically. This paper addresses some of the management challenges involved in setting up and nurturing learning networks. It draws particularly on case examples of learning networks in operation in the automotive components and timber products industries in South Africa.Item Open Access Defining recovery potential in river restoration: a biological data-driven approach(MDPI, 2021-11-24) Wilkes, Martin A.; Mckenzie, Morwenna; Naura, Marc; Allen, Laura; Morris, Mike; Van De Wiel, Marco; Dumbrell, Alex J.; Bani, Alessia; Lashford, Craig; Lavers, Tom; England, JudyScientists and practitioners working on river restoration have made progress on understanding the recovery potential of rivers from geomorphological and engineering perspectives. We now need to build on this work to gain a better understanding of the biological processes involved in river restoration. Environmental policy agendas are focusing on nature recovery, reigniting debates about the use of “natural” reference conditions as benchmarks for ecosystem restoration. We argue that the search for natural or semi-natural analogues to guide restoration planning is inappropriate due to the absence of contemporary reference conditions. With a catchment-scale case study on the invertebrate communities of the Warwickshire Avon, a fifth-order river system in England, we demonstrate an alternative to the reference condition approach. Under our model, recovery potential is quantified based on the gap between observed biodiversity at a site and the biodiversity predicted to occur in that location under alternative management scenarios. We predict that commonly applied restoration measures such as reduced nutrient inputs and the removal of channel resectioning could be detrimental to invertebrate diversity, if applied indiscriminately and without other complementary measures. Instead, our results suggest considerable potential for increases in biodiversity when restoration measures are combined in a way that maximises biodiversity within each water body