Browsing by Author "Nasir, Zaheer A."
Now showing 1 - 20 of 40
Results Per Page
Sort Options
Item Open Access Air quality (particulate matter) at heavy traffic sites in Lahore, Pakistan(Pakistan Agricultural Scientists Forum, 2015-06-30) Ali, Z.; Rauf, A.; Sidra, S.; Nasir, Zaheer A.; Colbeck, IanThe transport sector is a major contributor towards air pollution, particularly in the urban areas. Air quality at two major heavy traffic roads of Lahore, Pakistan was evaluated. Particulate matter (PM) was monitored for twenty four hours at each sampling sites. The total number of vehicles passing was also noted and correlated with the PM levels. The vehicular congestion as well as meteorological factors had a positive association with the PM levels. PM concentrations were significantly higher than the WHO recommended levels. It is necessary to control emissions from vehicular exhaust to reduce the level of pollutants in the ambient air in urban areas.Item Open Access Air quality and mental health: evidence, challenges and future directions(Cambridge University Press (CUP), 2023-07-05) Bhui, Kamaldeep; Newbury, Joanne B.; Latham, Rachel M.; Ucci, Marcella; Nasir, Zaheer A.; Turner, Briony; O'Leary, Catherine; Fisher, Helen L.; Marczylo, Emma; Douglas, Philippa; Stansfeld, Stephen; Jackson, Simon K.; Tyrrel, Sean; Rzhetsky, Andrey; Kinnersley, Robert P.; Kumar, Prashant; Duchaine, Caroline; Coulon, FredericBackground: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. Aims: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. Method: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. Results: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. Conclusions: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.Item Open Access Air quality and mental illness: role of bioaerosols, causal mechanisms and research priorities(Royal College of Psychiatrists, 2024-09-19) Bhui, Kamaldeep; Ucci, Marcella; Kumar, Prashant; Jackson, Simon K.; Whitby, Corinne; Colbeck, Ian; Pfrang, Christian; Nasir, Zaheer A.; Coulon, FredericBackground: Poor air quality can both trigger and aggravate lung and heart conditions, as well as affecting child development. It can even lead to neurological and mental health problems. However, the precise mechanisms by which air pollution affect human health are not well understood. Aims: To promote interdisciplinary dialogue and better research based on a critical summary of evidence on air quality and health, with an emphasis on mental health, and to do so with a special focus on bioaerosols as a common but neglected air constituent. Method: A rapid narrative review and interdisciplinary expert consultation, as is recommended for a complex and rapidly changing field of research. Results: The research methods used to assess exposures and outcomes vary across different fields of study, resulting in a disconnect in bioaerosol and health research. We make recommendations to enhance the evidence base by standardising measures of exposure to both particulate matter in general and bioaerosols specifically. We present methods for assessing mental health and ideal designs. There is less research on bioaerosols, and we provide specific ways of measuring exposure to these. We suggest research designs for investigating causal mechanisms as important intermediate steps before undertaking larger-scale and definitive studies. Conclusions: We propose methods for exposure and outcome measurement, as well as optimal research designs to inform the development of standards for undertaking and reporting research and for future policy.Item Open Access Airborne biological hazards and urban transport infrastructure: current challenges and future directions(Springer Verlag, 2016-06-18) Nasir, Zaheer A.; Campos, L. C.; Christie, N.; Colbeck, I.Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructureItem Open Access An assessment of air quality within facilities of municipal solid waste management (MSWM) sites in Lahore, Pakistan(MDPI, 2021-09-07) Raza, Syed Turab; Hafeez, Sana; Ali, Zulfiqar; Nasir, Zaheer A.; Butt, Muhammad Moeen; Saleem, Irfan; Wu, Jianping; Chen, Zhe; Xu, YunjianThe pollutants emission during the process of municipal solid waste management (MSWM) is of great concern due to its hazardous effect on the environment and living organisms. An assessment of the air quality of MSWM sites was made after having 16 repetitive visits at solid waste disposal sites and transfer stations of Lahore during wet and dry seasons. Pollution parameters such as fine particulate matter (PM2.5) and greenhouse gases (GHG) were measured along with meteorological parameters. PM2.5 measurement was made by using particle counter Dylos and TSI’s Dust Trak. Both of these instruments were positioned simultaneously at the source site and downwind (50 m). CH4 and meteorological parameters were measured by Aeroqual 500 series, while the Extech CO220 monitor was used to measure CO2 concentration. An assessment of air quality showed the levels of their mean values as CH4 and CO2 ranged between 1.5–13.7 ppm and 443.4–515.7 ppm, respectively. The PM2.5 ranged between 127.1 and 307.1 µg/m3 at sources and 172.3 and 403.8 µg/m3 downwind (50 m). GHG showed lower levels than the proposed limit value, which could not cause any health issues, while PM2.5 was 6–10 times higher than the Pak-EPA established standards. Higher pollutant concentration was recorded in the dry season than the wet season. Regression analysis was performed to predict correlation of PM2.5 with GHG and meteorological parameters. GHG as well as meteorological parameters also exhibited a correlation with PM2.5. It was estimated that the ambient air of such sites is not safe for public health. So, it is necessary to use safe practices for MSWM and its emission control to prevent nearby communities and the environment.Item Open Access Assessment of airborne particulate matter (PM2.5) in university classrooms of varying occupancy(Pakistan Agricultural Scientists Forum, 2015-06-30) Aziz, K.; Ali, Z.; Nasir, Zaheer A.; Colebeck, IanAir pollution is a major concern in Pakistan. Levels of particulate matter (PM2.5) in educational built environments, have not yet been studied comprehensively in Pakistan. This study was conducted to assess relationships between indoor and outdoor particulate matter in classrooms of the University of the Punjab, Lahore, using a DUSTTRAK Aerosol Monitor (TSI Model 8520). Sampling for PM2.5concentrations was carried out simultaneously outdoors and indoors in different classrooms on the campus. According to the level of occupancy three classrooms were selected i.e. Classroom I: low occupancy, Classroom II: medium occupancy and Classroom III: high occupancy. Simultaneous outdoor measurements were carried out at rooftop of each classroom. A tracer method was used to measure the air change per hour in each classroom. The 24 hour average concentrations of PM2.5 in Classrooms I, II and III were observed to be 282 .g/m³, 75 .g/m³ and 673 .g/m³ whereas 24 hour average outdoor levels were 324 .g/m³, 121 .g/m³ and 998.g/m³ respectively. Results showed a significant impact of ambient air and occupancy level on PM2.5 levels inside classrooms and all observed values exceeded the WHO limitsItem Open Access Assessment of respiratory problems in workers associated with intensive poultry facilities in Pakistan(Elsevier, 2020-01-07) Yasmeen, Roheela; Ali, Zulfiqar; Tyrrel, Sean F.; Nasir, Zaheer A.Background The poultry industry in Pakistan has flourished since the 1960s; however, there are scarce data regarding the impact of occupational exposure on the pulmonary health of farm workers in terms of years working in the industry. The objective of the present study was to assess the effect of poultry environment on the health of occupationally exposed poultry farmers in countries of warm climatic regions, such as Pakistan. This study will also show the effect of exposure to poultry facilities on the health of poultry farmers in the context of low-income countries with a relatively inadequate occupational exposure risk management. Materials and methods The lung function capacity of 79 poultry workers was measured using a spirometer. Along with spirometry, a structured questionnaire was also administrated to obtain information about age, height, weight, smokers/nonsmokers, years of working experience, and pulmonary health of farm workers. The workers who were directly involved in the care and handling of birds in these intensive facilities were considered and divided into four groups based on their years of working experience: Group I (3-10 months), Group II (1-5 years), Group III (6-10 years), and Group IV (more than 11 years). The forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and the FEV1/FVC ratio were considered to identify lung function abnormalities. Statistical analysis was carried out using independent sample t test, Chi-square test, Pearson's correlation, and linear regression. Results Based on the performed spirometry, 68 (86 %) of workers were found normal and healthy, whereas 11 (14 %) had a mild obstruction. Of the 11 workers with mild obstruction, the highest number with respect to the total was in Group IV (more than 11 years of working experience) followed by Group III and Group II. Most of the workers were found healthy, which seems to be because of the healthy survivor effect. For the independent sample t test, a significant difference was noticed between healthy and nonhealthy farmers, whereas Chi-square test showed a significant association with height, drugs, and working experience. Linear regression that was stratified by respiratory symptoms showed for workers with symptoms, regression models for all spirometric parameters (FVC, FEV1, and FEV1/FVC) have better predictive power or R square value than those of workers without symptoms. Conclusion These findings suggest that lung function capacity was directly related to years of working experience. With increasing number of working years, symptoms of various respiratory problems enhanced in the poultry workers. It should be noted that most of the poultry workers were healthy and young, the rationale being that there is a high turnover rate in this profession. The mobility in this job and our finding of 86% of the healthy workers in the present study also proposed healthy worker survivor effectItem Open Access Automotive related exposure to particulate air pollution in developing countries cities(Pakistan Agricultural Scientists Forum, 2015-06-30) Nasir, Zaheer A.; Colbeck, Ian; Ali, Z.; Ahmed, S.Poor urban air quality in developing countriesis a growing public health challenge due to rises in population, industries, urbanization and vehiclesalong with insufficient air quality management. Among the range of air pollutants exposure to particulate matter (PM) is of greatest concern due to its association with chronic obstructive pulmonary diseases. The present study reports traffic related exposure to PM by the roads in Lahore, Pakistan. The measurements of mass and number of PM were carried out by GRIMM analysers (Model 1.108 and Model 1.101) and condensation particle counter (TSI 3781). The heavy metals concentration in PM was determined by Graphite Furnace Atomic Absorption Spectrophotometer (Unicam atomic absorption, Cambridge, UK). The mean hourly average concentration of PM10, PM2.5, PM1 and PM10 (-) (2.5) at the road siteswas higher during weekdays(305 mu g/m(3), 84 mu g/m(3), 61 mu g/m(3) and 222 mu g/m(3), respectively) in comparison to the weekend (136 mu g/m3, 60 mu g/m3, 40 mu g/m3 and 76 mu g/m(3), respectively). At the background site the levels in the same size fractions were 206 mu g/m(3), 63 mu g/m(3), 31 mu g/m(3), and 143 mu g/m(3), respectively. Likewise, the number concentration of ultrafine particles was considerably higher at road sites (417,003 #/cm(3)) than the background(97,300 #/cm(3)). The concentration of heavy metals in PM decreased in the following order: Si, Al, Zn, Mn, Cu, Ni, Cd, Pb. Overall, the concentration of PM10, PM2.5 and toxic metals (Mn, Cd, Ni) was substantially higher than guidelines by the WHO. Furthermore, relatively higher levels of the fine fraction (PM2.5 and PM1) in the background reflect their higher residence time and resultant increased risk of exposure to the wider public beyond that of the vicinity to automotive sources. Everyday commuters, mostly on two and three wheelers as well asthe residential population in urban areas are at an enhanced risk of exposure to high levels of particulate pollution.Item Open Access Can chemical and molecular biomarkers help discriminate between industrial, rural and urban environments?(Elsevier, 2018-03-16) Garcia Alcega, Sonia; Nasir, Zaheer A.; Ferguson, Robert M. W.; Noël, Cyril; Cravo-Laureau, Cristiana; Whitby, Corinne; Dumbrell, Alex J.; Colbeck, Ian; Tyrrel, Sean; Coulon, FredericAir samples from four contrasting outdoor environments including a park, an arable farm, a waste water treatment plant and a composting facility were analysed during the summer and winter months. The aim of the research was to study the feasibility of differentiating microbial communities from urban, rural and industrial areas between seasons with chemical and molecular markers such as microbial volatile organic compounds (MVOCs) and phospholipid fatty acids (PLFAs). Air samples (3 l) were collected every 2 h for a total of 6 h in order to assess the temporal variations of MVOCs and PLFAs along the day. MVOCs and VOCs concentrations varied over the day, especially in the composting facility which was the site where more human activities were carried out. At this site, total VOC concentration varied between 80 and 170 μg m−3 in summer and 20–250 μg m−3 in winter. The composition of MVOCs varied between sites due to the different biological substrates including crops, waste water, green waste or grass. MVOCs composition also differed between seasons as in summer they are more likely to get modified by oxidation processes in the atmosphere and in winter by reduction processes. The composition of microbial communities identified by the analysis of PLFAs also varied among the different locations and between seasons. The location with higher concentrations of PLFAs in summer was the farm (7297 ng m−3) and in winter the park (11,724 ng m−3). A specific set of MVOCs and PLFAs that most represent each one of the locations was identified by principal component analyses (PCA) and canonical analyses. Further to this, concentrations of both total VOCs and PLFAs were at least three times higher in winter than in summer. The difference in concentrations between summer and winter suggest that seasonal variations should be considered when assessing the risk of exposure to these compounds.Item Open Access The challenges, uncertainties and opportunities of bioaerosol dispersion modelling from open composting facilities(WIT Press, 2017-08-06) Williams, Ben; Hayes, Enda T.; Nasir, Zaheer A.; Rolph, Catherine A.; Jackson, Simon; Khera, Shagun; Bennett, Alan; Gladding, Toni Lesley; Drew, Gillian H.; Tyrrel, Sean F.Bioaerosols are ubiquitous organic particles that comprise viruses, bacteria and coarser fractions of organic matter. Known to adversely affect human health, the impact of bioaerosols on a population often manifests as outbreaks of illnesses such as Legionnaires Disease and Q fever, although the concentrations and environmental conditions in which these impacts occur are not well understood. Bioaerosol concentrations vary from source to source, but specific human activities such as water treatment, intensive agriculture and composting facilitate the generation of bioaerosol concentrations many times higher than natural background levels. Bioaerosols are not considered ‘traditional’ pollutants in the same way as PM10, PM2.5, and gases such as NO2, and consequently dispersion models do not include a bespoke method for their assessment. As identified in previous studies, priority areas for improving the robustness of these dispersion models include: 1) the development of bespoke monitoring studies designed to generate accurate modelling input data; 2) the publication of a robust emissions inventory; 3) a code of practice to provide guidelines for consistent bioaerosol modelling practices; and 4) a greater understanding of background bioaerosol emissions. The aim of this research project, funded by the Natural Environmental Research Council (NERC), is to address these key areas through a better understanding of the generation, concentration and potential dispersion of bioaerosols from intensive agricultural and biowaste facilities, using case studies developed at specific locations within the UK. The objective is to further refine existing bioaerosol monitoring and modelling guidelines to provide a more robust framework for regulating authorities and site operators. This contribution outlines the gaps that hinder robust dispersion modelling, and describes the on-site bioaerosol data collection methods used in the study, explaining how they might be used to close these gaps. Examples of bioaerosol dispersion modelled using ADMS 5 are presented and discussed.Item Open Access Changes in particulate matter concentrations at different altitudinal levels with environmental dynamics(Pakistan Agricultural Scientists Forum, 2015-06-30) Zona, Z.; Ali, Z.; Sidra, S.; Nimra, A.; Ahmad, M.; Aziz, K.; Zainab, I.; Quratulain; Ansari, B.; Raza, S. T.; Nasir, Zaheer A.; Colbeck, IanAmbient air quality is defined not only by the source strength but a variety of meteorological parameters as well. In the current study, ambient concentrations of PM along with temperature and relative humidity levels were monitored at seven different locations of Pakistan. A DustTrak DRX (Model 8533, TSI Inc.) was employed for twenty four hours real time monitoring of particulate matter at the selected sites. A considerable variation was observed in the 24 hour trend of particulate matter (PM) at different locations owing to variation in meteorological conditions due to different altitudes and seasons, and natural and anthropogenic sources in the vicinity. The highest average concentrations of PM2.5 (407 mu g/m(3)) were observed at highest elevation (Makra Peak, Shogran, 3089 m) while lowest averages (102 mu g/m(3)) were obtained at the seaside (Hawks Bay, Karachi, 0 m). On the other hand PMTotal fraction exhibited highest levels at site B (506 mu g/m(3)) and lowest at Site A (121 mu g/m(3)). Correlation factors were determined for PM and meteorological parameters at each location. More research needs to be conducted to have a comprehensive knowledge about the physical parameters controlling particulate dispersal at different altitudes within the country.Item Open Access Comparative ambient and indoor particulate matter analysis of operation theatres of government and private (trust) hospitals of Lahore, Pakistan(Pakistan Agricultural Scientists Forum, 2015-06-30) Nimra, A.; Ali, Z.; Khan, M. N.; Gulshan, T.; Sidra, S.; Gardezi, J. R.; Tarar, M. R.; Saleem, M.; Nasir, Zaheer A.; Colbeck, IanThe link between infection and indoor air quality (IAQ) in operating theatres is well established. The level of airborne particulate matter (PM) in operating theatres in Pakistan has not yet been studied comprehensively. Monitoring of both indoor (operating theatre) and outdoor concentrations of PM in both activity and non-activity time periods was done using a DUSTTRAK Aerosol Monitor (TSI Model 8520) and DRX Aerosol Monitor (TSI Model 8533) for 24 hours. Two hospitals in Lahore were selected: Services Hospital (government – site 1) and Shalamar Hospital (private – site 2). The highest concentration of PM was observed in the orthopaedic operating theatre at site 1 during working hours with an average concentration of 757(±540), 809(±58), 824(±585), 875(±586) and 970(±581) µg/m³ of PM1 ,PM2.5, PM4, PM10and PMTotalrespectively while the average PM2.5outdoor concentration was 294 µg/m3 . The minimum average PM concentration was found in the orthopaedic operating theatre at site 2 during working hours: 18(±8), 19(±8), 20(±9), 26(±9) and 39(±9) µg/m³ for PM1, PM2.5, PM4, PM10 and PMTotal respectively. The use of vertical laminar air flow ventilation strategy was found to be an effective measure in reducing PM levels and it might be possible to predict the air quality of operating theatres by determining PM dust load. Factors such as ventilation system, door opening /closing rates, building age, possible sources of infiltration, number of people present in the operating area all play a role in influencing PM concentrations in operating theatres.Item Open Access Comparative study of particulate matter in the transport microenvironment (buses) of Pakistan and UK(Pakistan Agricultural Scientists Forum, 2015-06-30) Aziz, K.; Ali, Z.; Nasir, Zaheer A.; Colbeck, IanTransport microenvironments can contain higher levels of particulate matter due to infiltration from the roads, vehicular exhaust and commuter's activities. The present study monitored PM, CO2, CO, temperature and relative humidity levels in diesel-powered buses in Pakistan and United Kingdom. Two routes of almost the same travelling distance were selected in Pakistan and the UK. Indoor air quality of the buses was monitored to determine the exposure faced by the commuters on inter-city journeys. While the observed levels in both countries were not in compliance with the WHO guidelines, levels of particulate matter were much higher in Pakistan than the concentrations in UK.Item Open Access A controlled study on the characterisation of bioaerosols emissions from compost(2018-09-28) Nasir, Zaheer A.; Rolph, Catherine A.; Collins, Samuel; Stevenson, David; Gladding, Toni Lesley; Hayes, Enda T.; Williams, Ben; Khera, Shagun; Jackson, Simon; Bennett, Allan; Parks, Simon; Kinnersley, Robert P.; Walsh, Kerry A.; Pollard, Simon J. T.; Drew, Gillian H.; Garcia Alcega, Sonia; Coulon, Frederic; Tyrrel, SeanBioaerosol emissions arising from biowaste treatment are an issue of public concern. To better characterise the bioaerosols, and to assess a range of measurement methods, we aerosolised green waste compost under controlled conditions. Viable and non-viable Andersen samplers, cyclone samplers and a real time bioaerosol detection system (Spectral Intensity Bioaerosol Sensor (SIBS)) were deployed simultaneously. The number-weighted fraction of fluorescent particles was in the range 22–26% of all particles for low and high emission scenarios. Overall fluorescence spectral profiles seen by the SIBS exhibited several peaks across the 16 wavelength bands from 298 to 735 nm. The size-fractionated endotoxin profile showed most endotoxin resided in the 2.1–9 μm aerodynamic diameter fraction, though up to 27% was found in a finer size fraction. A range of microorganisms were detected through culture, Matrix Assisted Laser Desorption and Ionisation Time of Flight Mass Spectrometry (MALDI-TOF) and quantitative polymerase chain reaction (qPCR), including Legionella pneumophila serogroup 1. These findings contribute to our knowledge of the physico-chemical and biological characteristics of bioaerosols from composting sites, as well as informing future monitoring approaches and data interpretation for bioaerosol measurement.Item Open Access Environmental health and wildlife research with transnational education forebodings, applicability and approach(Pakistan Agricultural Scientists Forum, 2015-06-30) Ali, Z.; Colbeck, Ian; Campos, L. C.; Nasir, Zaheer A.; Ali, M.; Riaz, N.Pakistan, the sixth most populous country (91.71 million)in the world, is battling to keep the balance between economic growth and environmental protection. At present the government is mainly focusing on meeting the energy and food needs of the country and environmental protection is lacking serious attention. Pollution (air, water, and soil), sanitation and loss of wildlife and biodiversity are growing environmental health issues in Pakistan. In order to deliver demand led solutions to these multifaceted challenges development of institutional and technical capacities in the countryis prerequisite. Transnational Education (TNE) provides institutional mobility in tertiary education and through British Council facilitated links we were successful in developing a much needed baseline courses work and underway the research for environmental health related issues. The Government of Pakistan will certainly use the data from the research and experts will also be available to concerned departments to tackle emerging environmental problems. Additionally the understanding and concerns of TNE in academic, economic, career and socio-cultural contexts could be imperative challenges. Through TNE it was learned that other nations / regions can be benefitted from such institutes and concerned people for a true flow of knowledge for reciprocated problems. The recommendations include general considerations for policy makers which are linked with environmental health and wildlife. Among the general considerations, or overarching advice, is that policies should promote community-wide action to manage wildlife, biodiversity, environmental health and that the safety of new emissions and exposure with technologies must be assessed rather than estimated.Item Open Access Estimation of particulate matter and gaseous concentrations using low-cost sensors from broiler houses(Springer Verlag, 2019-06-27) Yasmeen, Roheela; Nasir, Zaheer A.; Tyrrel, Sean F.Particulate and gaseous emissions from intensive poultry facilities are major public and environmental health concern. The present study was aimed at exploratively monitoring particulate matter (PM) and gaseous concentrations in controlled-environment facilities using low-cost sensors in Lahore, Pakistan. The indoors and outdoors of 18 broiler houses, grouped into three categories based on the age of birds: group I (1–20 days), group II (21–30 days) and group III (31–40 days), were examined. Low-cost sensors Dylos 1700 and Aeroqual 500 series with different gas sensor heads were used to monitor PM and different gases such as nitrogen dioxide (NO2), hydrogen sulphide (H2S), carbon dioxide (CO2) and methane (CH4), respectively. Overall, the mean PM and gaseous concentrations increased with the age and activity of birds as compared with the non-activity time of birds. Statistically significant differences were observed in all measured parameters among the groups. The negative correlation between indoor and outdoor environments for PM and gas concentrations at some broiler houses demonstrates the contribution of additional sources to emissions in outdoor environments. The findings contribute to our knowledge of temporal characteristics of particulate and gaseous concentrations from poultry facilities particularly in Pakistan and generally to the capability of using low-cost sensors to evaluate emissions from such facilities.Item Open Access Ethno-environmental knowledge as a tool to combat indoor air pollution in low income countries: a case study from rural communities in Pakistan(2014-07-30) Nasir, Zaheer A.; Colbeck, Ian; Bharucha, Zareen P.; Cintra Campos, Luiza; Ali, ZulfiqarIt has recently been estimated that 4 million deaths each year are associated with air pollution originating from household solid fuel use. Interventions to reduce biomass fuel-related emissions can yield a diverse stream of benefits including improved public health, socio-economic development, reduced land degradation and climate change mitigation. This study investigates the use of indigenous knowledge to inform interventions to combat indoor air pollution at a rural site in the Punjab province of Pakistan. The results indicate that the majority of people using biomass fuel had knowledge of its ill health effects. A range of methods were utilised to reduce indoor smoke including cooking in open spaces, use of chimneys, better ventilation and use of dry fuel. Education and housing type showed a statistically significant relationship with awareness of methods to reduce indoor exposure to biomass smoke. These findings lend support to the notion that communities have indigenous knowledge and their own methods to reduce exposure to indoor smoke from biomass fuels; this knowledge can be used as tool to design and implement sustainable intervention strategies to reduce the risk of exposure to indoor air pollution. It is recommended that a community based intervention focusing on locally manufactured improved stoves and better designed cooking spaces would be a suitable intervention in this region.Item Open Access Exposure to NO2 in occupational built environments in urban centre in Lahore(Pakistan Agricultural Scientists Forum, 2015-06-30) Andleeb, S.; Ali, Z.; Afzal, F.; Razzaq, A. A.; Mehmood, T.; Noor, N.; Rasheed, F.; Nasir, Zaheer A.; Colbeck, IanIncreased economic growth, urbanisation and substantial rise in automobile vehicles has contributed towards the elevated levels of air pollution in major cities in Pakistan. Aone week study was conducted by using passive samplers to assess NO2 concentration in occupational built environments at two most congested and populated sites of Lahore. Both sites were locatedon the busy roads of Lahore. At Site-I the highest concentration was in outdoors followed by corridor and indoor. While at Site II all the sampling location wereindoors and level were comparable to that of outdoor levelsat Site I. The results suggest the likely contribution of ambient sources in exposure to indoor NO2 in educational and other occupational built environments in urban centres.Item Open Access Fingerprinting ambient air to understand bioaerosol profiles in three different environments in the South East of England(Elsevier, 2020-02-24) Garcia Alcega, Sonia; Nasir, Zaheer A.; Cipullo, Sabrina; Ferguson, Robert M. W.; Yan, Cheng; Whitby, Corinne; Dumbrell, Alex J.; Drew, Gillian H.; Colbeck, Ian; Tyrrel, Sean F.Molecular and chemical fingerprints from 10 contrasting outdoor air environments, including three agricultural farms, three urban parks and four industrial sites were investigated to advance our understanding of bioaerosol distribution and emissions. Both phospholipid fatty acids (PLFA) and microbial volatile organic compounds (MVOC) profiles showed a different distribution in summer compared to winter. Further to this, a strong positive correlation was found between the total concentration of MVOCs and PLFAs (r = 0.670, p = 0.004 in winter and r = 0.767, p = 0.001 in summer) demonstrating that either chemical or molecular fingerprints of outdoor environments can provide good insights into the sources and distribution of bioaerosols. Environment specific variables and most representative MVOCs were identified and linked to microbial species emissions via a MVOC database and PLFAs taxonomical classification. While similar MVOCs and PLFAs were identified across all the environments suggesting common microbial communities, specific MVOCs were identified for each contrasting environment. Specifically, 3,4-dimethylpent-1-yn-3-ol, ethoxyethane and propanal were identified as key MVOCs for the industrial areas (and were correlated to fungi, Staphylococcus aureus (Gram positive bacteria) and Gram negative bacteria, R = 0.863, R = 0.618 and R = 0.676, respectively) while phthalic acid, propene and isobutane were key for urban environments (correlated to Gram negative bacteria, fungi and bacteria, R = 0.874, R = 0.962 and R = 0.969 respectively); and ethanol, 2-methyl-2-propanol, 2-methyl-1-pentene, butane, isoprene and methyl acetate were key for farms (correlated to fungi, Gram positive bacteria and bacteria, R = 0.690 and 0.783, R = 0.706 and R = 0.790, 0.761 and 0.768). The combination of MVOCs and PLFAs markers can assist in rapid microbial fingerprinting of distinct environmental influences on ambient air quality.Item Open Access Fingerprinting outdoor air environment using microbial volatile organic compounds (MVOCs) – A review(Elsevier, 2016-11-08) Garcia Alcega, Sonia; Nasir, Zaheer A.; Ferguson, Robert M. W.; Whitby, Corinne; Dumbrell, Alex J.; Colbeck, I.; Gomes, D. M.; Tyrrel, Sean F.; Coulon, FredericThe impact of bioaerosol emissions from urban, agricultural and industrial environments on local air quality is of growing policy concern. Yet the risk exposure from outdoor emissions is difficult to quantify in real-time as microbial concentration in air is low and varies depending on meteorological factors and land use types. While there is also a large number of sampling methods in use, there is yet no standardised protocol established. In this review, a critical insight into chemical fingerprint analysis of microbial volatile organic compounds (MVOC) is provided. The most suitable techniques for sampling and analysing MVOCs in outdoor environments are reviewed and the need for further studies on MVOCs from outdoor environments including background levels is highlighted. There is yet no rapid and portable technique that allows rapid detection and analysis of MVOCs on site. Further directions towards a portable GC–MS coupled with SPME or an electronic nose are discussed.