CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Neto, Leonor"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Compression behaviour of wire+ arc additive manufactured structures
    (MDPI, 2021-05-27) Abbaszadeh, Masoud; Ventzke, Volker; Neto, Leonor; Riekehr, Stefan; Martina, Filomeno; Kashaev, Nikolai; Hönnige, Jan; Williams, Stewart; Klusemann, Benjamin
    Increasing demand for producing large-scale metal components via additive manufacturing requires relatively high building rate processes, such as wire + arc additive manufacturing (WAAM). For the industrial implementation of this technology, a throughout understanding of material behaviour is needed. In the present work, structures of Ti-6Al-4V, AA2319 and S355JR steel fabricated by means of WAAM were investigated and compared with respect to their mechanical and microstructural properties, in particular under compression loading. The microstructure of WAAM specimens is assessed by scanning electron microscopy, electron back-scatter diffraction, and optical microscopy. In Ti-6Al-4V, the results show that the presence of the basal and prismatic crystal planes in normal direction lead to an anisotropic behaviour under compression. Although AA2319 shows initially an isotropic plastic behaviour, the directional porosity distribution leads to an anisotropic behaviour at final stages of the compression tests before failure. In S355JR steel, isotropic mechanical behaviour is observed due to the presence of a relatively homogeneous microstructure. Microhardness is related to grain morphology variations, where higher hardness near the inter-layer grain boundaries for Ti-6Al-4V and AA2319 as well as within the refined regions in S355JR steel is observed. In summary, this study analyzes and compares the behaviour of three different materials fabricated by WAAM under compression loading, an important loading condition in mechanical post-processing techniques of WAAM structures, such as rolling. In this regard, the data can also be utilized for future modelling activities in this direction.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of machine hammer peening conditions on β grain refinement of additively manufactured Ti-6Al-4V
    (MDPI, 2023-11-14) Neto, Leonor; Williams, Stewart; Davis, Alec E.; Kennedy, Jacob R.
    Ti-6Al-4V components built with wire plus arc additive manufacturing (WAAM) generally have long columnar β grains that cause anisotropic behavior when the material undergoes static and cyclic failure. Recently, machine hammer peening (MHP) has been proved to induce prior-β grain refinement in WAAM resulting in isotropic properties and increased strength. In this study, MHP was investigated for WAAM walls to establish the dependency of the β grain refinement on peening parameters, such as energy, tool radius, and distance between impact steps. All combinations of parameters investigated resulted in grain-refined microstructures. The plastic strain theory failed to explain these results, as the microstructure refinement achieved did not match the strain distribution obtained. Thus, a new theory of accumulated energy was proposed in which the dynamic deformation of the MHP process should also be taken into consideration. The mechanical properties for the MHP conditions showed higher strength and decreased anisotropy as the energy per length increased. This was attributed to the reduction in texture in the WAAM walls. Thus, when applying MHP, the energy per unit length is controlling the grain size obtained and improved mechanical properties can be achieved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The effectiveness of grain refinement by machine hammer peening in high deposition rate wire-arc AM Ti-6Al-4V
    (Springer, 2020-05-06) Hönnige, J. R.; Davis, Alec E.; Ho, A.; Kennedy, Jacob R.; Neto, Leonor; Prangnell, P.; Williams, Stewart
    Surface deformation, applied in-process by machine hammer peening (MHP), has the potential to refine the coarse columnar β-grain structures normally found in high deposition rate Wire-Arc Additive Manufacturing (WAAM) processes with Ti alloys like Ti-6Al-4V. Effective refinement, as well as a reduction in texture strength, has been achieved in relatively thick sections and to a depth that is greater than that expected from the surface deformation induced by MHP. By application of MHP to each deposition track, the average β-grain size could be reduced from cm’s to less than 0.5 mm. Systematic experiments have been performed to investigate the origin of this interesting effect, which included ‘stop-action’ trials and separation of the strain and temperature gradients induced by the two process steps. The maximum depth of the plastic deformation from MHP required to generate new β-grain orientations was determined by electron backscatter diffraction local average misorientation analysis to be < 0.5 mm, which was less than the melt pool depth in the WAAM process. Nevertheless, new β-grain orientations were observed to form within the peened layer ahead of the approaching heat source as the peak temperature rose above the β transus, which then grew into the less deformed core of the wall as the temperature rose. This allowed the new grain orientations to penetrate deeper than the melt pool depth and survive to act as substrates for epitaxial growth at the fusion boundary during solidification, resulting in significant grain refinement
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Experimental investigations on solid and metal-cored creep-resistant wires deposited under GMA and PTA-based wire arc additive manufacturing (WAAM)
    (Springer, 2025-01-01) Iqbal, Hambal; Pardal, Goncalo; Suder, Wojciech; Ascari, Alessandro; Fortunato, Alessandro; Liverani, Erica; Williams, Stewart W.; Neto, Leonor
    Wire arc additive manufacturing (WAAM), also known as Arc-DED, possesses great potential for efficient production using various materials and wire types. This study utilized gas metal arc (GMA) and plasma transferred arc (PTA) variants of WAAM to deposit 2.25Cr-1Mo steel employing a metal-cored wire (MCW) and a solid wire counterpart having the same chemical composition for the comparative study. Initially, bead-on-plate trials were conducted with both WAAM processes and different shielding gas combinations in GMA-WAAM using the cored wire. The heat input versus deposition ratio was analysed to assess the heat input and the effects of shielding gases in GMA-WAAM. Arc behaviour was monitored with a process camera, and bead morphologies and dilutions were compared. Furthermore, test walls were deposited under the two WAAM processes and the shielding gas conditions, employing the cored and solid wire. Detailed microstructural study was conducted through optical microscopy, and hardness tests were performed to determine the mechanical properties. Energy dispersive X-ray spectroscopy (EDS) was used to examine the elemental composition and potential segregation in walls deposited with cored and solid wires. Results indicated a lower heat input when using cored wire and variable heat input due to shielding gases. A bainitic/martensitic microstructure was observed in test walls deposited with cored and solid wires with comparable microstructural features. The PTA process produced higher hardness than GMA, and solid wire exhibited slightly higher hardness than cored wire. Selection of shielding gas also influenced the hardness. Finally, the EDS maps and elemental study revealed comparable results for both wires. The results show good performance and outcome for cored wire.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanical properties enhancement of additive manufactured Ti-6Al-4V by machine hammer peening
    (Springer , 2019-07-31) Williams, Stewart W.; Ding, Jialuo; Hönnige, Jan; Martina, Filomeno; Neto, Leonor
    Wire + Arc Additive Manufacturing (WAAM) is a technology potentially offering reduction of material wastage, costs and shorter lead-times. It is being considered as a technology that could replace conventional manufacturing processes of Ti-6Al-4V, such as machining from wrought or forged materials. However, WAAM Ti-6Al-4V is characterized by coarse β-grains, which can extend through several deposited layers resulting in strong texture and anisotropy. As a solution, inter-pass cold rolling has been proven to promote grain refinement, texture modification and improvement of material strength by plastically deforming the material between each deposited layer. Nevertheless, with the increased interest in the WAAM technology, the complexity and size of the deposited parts has increased, and its application can be hindered by the low speed and complex/costly equipment required to perform rolling at this scale. Therefore, Machine Hammer Peening (MHP) has been studied as an alternative cold work process. MHP can be used robotically, offering greater flexibility and speed, and it can be applied easily to any large-scale geometry. Similarly to rolling, MHP is applied between each deposited layer with the new ECOROLL peening machine and, consequently, it is possible to eliminate texturing and reduce the β-grains size from centimeters long to approximately 1 to 2 mm. This effect is studied for thin and thick walls and no considerable change in grain size is observed, proving the applicability of MHP to large components. The yield strength and ultimate tensile strength increases to 907 MPa and 993 MPa, respectively, while still having excellent ductility. This grain refinement may also improve fatigue life and induce a decrease in crack propagation rate. In this study, it has been shown that MHP is a suitable process for WAAM Ti-6Al-4V applications, can be applied robotically and the grain refinement induced by very small plastic deformations can increase mechanical properties.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback