CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Oliveira, Tania S."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    How is agroforestry perceived in Europe? An assessment of positive and negative aspects by stakeholders
    (Springer, 2017-08-24) Garcia de Jalon, Silvestre; Burgess, Paul J.; Graves, Anil; Moreno, Gerardo; McAdam, Jim; Pottier, Eric; Novak, Sandra; Bondesan, Valerio; Mosquera-Losada, Rosa; Crous-Duran, Josep; Palma, João H. N.; Paulo, Joana A.; Oliveira, Tania S.; Cirou, Eric; Hannachi, Yousri; Pantera, Anastasia; Wartelle, Regis; Kay, Sonja; Malignier, Nina; van Lerberghe, Philippe; Tsonkova, Penka; Mirck, Jaconette; Rois, Mercedes; Kongsted, Anne Grete; Thenail, Claudine; Luske, Boki; Berg, Staffan; Gosme, Marie; Vityi, Andrea
    Whilst the benefits of agroforestry are widely recognised in tropical latitudes few studies have assessed how agroforestry is perceived in temperate latitudes. This study evaluates how stakeholders and key actors including farmers, landowners, agricultural advisors, researchers and environmentalists perceive the implementation and expansion of agroforestry in Europe. Meetings were held with 30 stakeholder groups covering different agroforestry systems in 2014 in eleven EU countries (Denmark, France, Germany, Greece, Hungary, Italy, Netherlands, Portugal, Spain, Sweden and the United Kingdom). In total 344 valid responses were received to a questionnaire where stakeholders were asked to rank the positive and negative aspects of implementing agroforestry in their region. Improved biodiversity and wildlife habitats, animal health and welfare, and landscape aesthetics were seen as the main positive aspects of agroforestry. By contrast, increased labour, complexity of work, management costs and administrative burden were seen as the most important negative aspects. Overall, improving the environmental value of agriculture was seen as the main benefit of agroforestry, whilst management and socio-economic issues were seen as the greatest barriers. The great variability in the opportunities and barriers of the systems suggests enhanced adoption of agroforestry across Europe will be most likely to occur with specific initiatives for each type of system.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrating belowground carbon dynamics into Yield-SAFE, a parameter sparse agroforestry model
    (Springer, 2017-09-16) Palma, João H. N.; Crous-Duran, Josep; Graves, Anil; García de Jalón, Silvestre; Upson, Matthew; Oliveira, Tania S.; Paulo, Joana A.; Ferreiro-Domínguez, N.; Moreno, Gerardo; Burgess, Paul
    Agroforestry combines perennial woody elements (e.g. trees) with an agricultural understory (e.g. wheat, pasture) which can also potentially be used by a livestock component. In recent decades, modern agroforestry systems have been proposed at European level as land use alternatives for conventional agricultural systems. The potential range of benefits that modern agroforestry systems can provide includes farm product diversification (food and timber), soil and biodiversity conservation and carbon sequestration, both in woody biomass and the soil. Whilst typically these include benefits such as food and timber provision, potentially, there are benefits in the form of carbon sequestration, both in woody biomass and in the soil. Quantifying the effect of agroforestry systems on soil carbon is important because it is one means by which atmospheric carbon can be sequestered in order to reduce global warming. However, experimental systems that can combine the different alternative features of agroforestry systems are difficult to implement and long-term. For this reason, models are needed to explore these alternatives, in order to determine what benefits different combinations of trees and understory might provide in agroforestry systems. This paper describes the integration of the widely used soil carbon model RothC, a model simulating soil organic carbon turnover, into Yield-SAFE, a parameter sparse model to estimate aboveground biomass in agroforestry systems. The improvement of the Yield-SAFE model focused on the estimation of input plant material into soil (i.e. leaf fall and root mortality) while maintaining the original aspiration for a simple conceptualization of agroforestry modeling, but allowing to feed inputs to a soil carbon module based on RothC. Validation simulations show that the combined model gives predictions consistent with observed data for both SOC dynamics and tree leaf fall. Two case study systems are examined: a cork oak system in South Portugal and a poplar system in the UK, in current and future climate.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modelling tree density effects on provisioning ecosystem services in Europe
    (2018-10-20) Crous-Duran, Josep; Graves, Anil R.; Paulo, Joana A.; Mirck, Jaconette; Oliveira, Tania S.; Kay, Sonja; García de Jalón, Silvestre; Palma, João H. N.
    Agroforestry systems, in which trees are integrated in arable or pasture land, can be used to enable sustainable food, material, and energy production (i.e. provide provisioning ecosystem services) whilst reducing the negative environmental impacts associated with farming. However, one constraint on the uptake of agroforestry in Europe is a lack of knowledge on how specific agroforestry designs affect productivity. A process-based biophysical model, called Yield-SAFE, was used: (1) to quantify the food, material and biomass energy production of four contrasting case study systems in Europe in a common energy unit (MJ ha−1), and (2) to quantify how tree density determined the supply of provisioning ecosystem services. The Yield-SAFE model was calibrated so that simulated tree and crop growth fitted observed growth data for reference monoculture forestry, pasture, and arable systems. The modelled results showed that including trees in pasture or arable systems increased the overall accumulated energy of the system in comparison with monoculture forestry, pasture, and arable systems, but that the accumulated energy per tree was reduced as tree density increased. The greatest accumulated energy occurred in the highest tree density agroforestry system at all the case study sites. This suggests that the capture of environmental resources, such as light and water, for obtaining provisioning services is most effective in high density agroforestry systems. Further modelling should include tree canopy effects on micro-climatic and the impact this has on pasture, crop, and livestock yields, as well as the impact of tree density on the economic value and management of the different systems.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback