CERES
CERES TEST Only!
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    New user? Click here to register. Have you forgotten your password?
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ouyang, Zeyu"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrated power and thermal management system for a hybrid-electric aircraft: integrated modelling and passive cooling analysis
    (American Society of Mechanical Engineers, 2024) Ouyang, Zeyu; Nikolaidis, Theoklis; Jafari, Soheil
    Aircraft electrification introduces challenges in power and thermal management. In a hybrid-electric aircraft (HEA), the additional heat loads generated by the high-power electrical components in the propulsion system can negate the benefits of the HEA. Consequently, an integrated energy management system is required for the HEA to reject the additional heat loads while minimizing energy consumption. This paper presents the integrated modelling method for an integrated power and thermal management system (IPTMS) for HEA. With this method, a platform can be developed to assess the varying efficiencies of the components in the electrical propulsion system (EPS), and the performance of the thermal management system (TMS), such as passive cooling, during a flight mission. This makes it applicable to modular designs and optimizations of the IPTMS. A small/medium range (SMR) aircraft similar to ATR72 is studied. In this study, the EPS operates only during take-off and climb. Therefore, the platform assesses the heat and power loads of the IPTMS for a typical flight mission (take-off and climb) in this study. The performance of passive cooling is also analysed across this typical flight mission and under normal, hot-day, and cold-day conditions. It was found that passive cooling is sufficient under these three conditions, and the active temperature control is requried to ensure the components' temperatures are above the minimum temperatures. These findings imply the potential to minimize TMS weight and energy consumption, providing an insight for further research on IPTMS.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrated power and thermal management system in a parallel hybrid-electric aircraft: an exploration of passive and active cooling and temperature control
    (MDPI, 2025-03-13) Ouyang, Zeyu; Nikolaidis, Theoklis; Jafari, Soheil; Pontika, Evangelia
    Hybrid-electric aircraft (HEAs) represent a promising solution for reducing fuel consumption and emissions. However, the additional heat loads generated by the electrical propulsion systems in HEAs can diminish these benefits. To address this, an integrated power and thermal management system (IPTMS) is essential to mitigate these challenges by optimizing the interaction between thermal management and power management. This paper presents a preliminary IPTMS design for a parallel HEA operating under International Standard Atmosphere (ISA) conditions. The design includes an evaluation of active cooling, passive cooling, and active temperature control strategies. The IPTMS accounts for heat loads from the engine system, including the generators, shaft bearings, and power gearboxes, as well as from the electrical propulsion system, such as motors, batteries, converters, and the electric bus. This study investigates the impact of battery power (BP) contribution to cooling power on required coolant pump power and induced ram air drag. A comparison of IPTMS performance under 0% and 100% BP conditions revealed that the magnitude of battery power contribution to cooling power does not significantly impact the thermal management system (TMS) performance due to the large disparity between the total battery power (maximum 950 kW) and the required cooling power (maximum 443 W). Additionally, it was determined that the motor-inverter loop accounts for 95% of the pump power and 97% of the ram air drag. These findings suggest that IPTMS optimization should prioritize the thermal domain, particularly the motor-inverter loop. This study provides new insights into IPTMS design for HEAs, paving the way for further exploration of IPTMS performance under various operating conditions and refinement of cooling strategies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Integrated power and thermal management systems for civil aircraft: review, challenges, and future opportunities
    (MDPI, 2024-04-26) Ouyang, Zeyu; Nikolaidis, Theoklis; Jafari, Soheil
    Projects related to green aviation designed to achieve fuel savings and emission reductions are increasingly being established in response to growing concerns over climate change. Within the aviation industry, there is a growing trend towards the electrification of aircraft, with more-electric aircraft (MEA) and all-electric aircraft (AEA) being proposed. However, increasing electrification causes challenges with conventional thermal management system (TMS) and power management system (PMS) designs in aircraft. As a result, the integrated power and thermal management system (IPTMS) has been developed for energy-optimised aircraft projects. This review paper aims to review recent IPTMS progress and explore potential design solutions for civil aircraft. Firstly, the paper reviews the IPTMS in electrified propulsion aircraft (EPA), presenting the architectures and challenges of the propulsion systems, the TMS cooling strategies, and the power management optimisation. Then, several research topics in IPTMS are reviewed in detail: architecture design, power management optimisation, modelling, and analysis method development. Through the review of state-of-the-art IPTMS research, the challenges and future opportunities and requirements of IPTMS design are discussed. Based on the discussions, two potential solutions for IPTMS to address the challenges of civil EPA are proposed, including the combination of architecture design and power management optimisation and the combination of modelling and analysis methods.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback