Browsing by Author "Pan, Yuwei"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Open Access Biosensors for wastewater-based epidemiology for monitoring public health(Elsevier, 2020-12-25) Mao, Kang; Zhang, Hua; Pan, Yuwei; Yang, ZhugenPublic health is attracting increasing attention due to the current global pandemic, and wastewater-based epidemiology (WBE) has emerged as a powerful tool for monitoring of public health by analysis of a variety of biomarkers (e.g., chemicals and pathogens) in wastewater. Rapid development of WBE requires rapid and on-site analytical tools for monitoring of sewage biomarkers to provide immediate decision and intervention. Biosensors have been demonstrated to be highly sensitive and selective tools for the analysis of sewage biomarkers due to their fast response, ease-to-use, low cost and the potential for field-testing. This paper presents biosensors as effective tools for wastewater analysis of potential biomarkers and monitoring of public health via WBE. In particular, we discuss the use of sewage sensors for rapid detection of a range of targets, including rapid monitoring of community-wide illicit drug consumption and pathogens for early warning of infectious diseases outbreaks. Finally, we provide a perspective on the future use of the biosensor technology for WBE to enable rapid on-site monitoring of sewage, which will provide nearly real-time data for public health assessment and effective intervention.Item Open Access Miniaturized analytical methods for determination of environmental contaminants of emerging concern - a review(Elsevier, 2020-12-02) Pena-Pereira, Francisco; Bendicho, Carlos; Mutavdžić, Dragana; Pavlović, Dragana Mutavdžić; Martín-Esteban, Antonio; Díaz-Álvarez, Myriam; Pan, Yuwei; Cooper, Jon; Yang, Zhugen; Safarik, Ivo; Pospiskova, Kristyna; Segundo, Marcela A.; Psillakis, ElefteriaThe determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.Item Open Access Nanomaterial-based aptamer sensors for analysis of illicit drugs and evaluation of drugs consumption for wastewater-based epidemiology(Elsevier, 2020-06-06) Mao, Kang; Zhang, Hua; Pan, Yuwei; Zhang, Kuankuan; Cao, Haorui; Li, Xiqing; Yang, ZhugenThe abuse of illicit drugs usually associated with dramatic crimes may cause significant problems for the whole society. Wastewater-based epidemiology (WBE) has been demonstrated to be a novel and cost-effective way to evaluate the abuse of illicit drugs at the community level, and has been used as a routine method for monitoring and played a significant role for combating the crimes in some countries, e.g. China. The method can also provide temporal and spatial variation of drugs of abuse. The detection methods mainly remain on the conventional liquid chromatography coupled with mass spectrometry, which is extremely sensitive and selective, however needs advanced facility and well-trained personals, thus limit it in the lab. As an alternative, sensors have emerged to be a powerful analytical tool for a wide spectrum of analytes, in particular aptamer sensors (aptasensors) have attracted increasing attention and could act as an efficient tool in this field due to the excellent characteristics of selectivity, sensitivity, low cost, miniaturization, easy-to-use, and automation. In this review, we will briefly introduce the context, specific assessment process and applications of WBE and the recent progress of illicit drug aptasensors, in particular focusing on optical and electrochemical sensors. We then highlight several recent aptasensors for illicit drugs in new technology integration and discuss the feasibility of these aptasensor for WBE. We will summarize the challenges and propose our insights and opportunity on aptasensor for WBE to evaluate community-wide drug use trends and public healthItem Open Access Opportunities and challenges for biosensors and nanoscale analytical tools for pandemics: COVID-19(American Chemical Society, 2020-06-18) Bhalla, Nikhil; Pan, Yuwei; Yang, Zhugen; Payam, Amir FarokhBiosensors and nanoscale analytical tools have shown a huge growth in literature in the past 20 years, with a large number of reports on the topic of ’ultra-sensitive’, ’costeffective’ and ’early-detection’ tools with a potential of ’mass-production’ cited on the web of science. Yet none of these tools are commercially available in the market or practically viable for mass production and use in pandemic diseases such as COVID-19. In this context, we review the technological challenges and opportunities of current bio/chemical sensors and analytical tools by critically analyzing the bottlenecks which have hindered the implementation of advanced sensing technologies in pandemic diseases. We also describe in brief COVID-19 by comparing it with other pandemic strains such as SARS and MERS for the identification of features that enable biosensing. Moreover, we discuss visualization and characterization tools that can potentially be used not only for sensing applications but also assist in speeding up the drug discovery and vaccine development process. Furthermore, we discuss the emerging monitoring mechanism, namely wastewater-based epidemiology, for early warning of the outbreak, focusing on sensors for rapid and on-site analysis of SARS-COV-2 in sewage. To conclude, we provide holistic insights into challenges associated with the quick translation of sensing technologies, policies, ethical issues, technology adoption, and an overall outlook of the role of the sensing technologies in pandemics.Item Open Access Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings(Elsevier, 2024-10-16) Pan, Yuwei; Wang, Baojun; Cooper, Jonathan M.; Yang, ZhugenTracking genomic sequences as microbial biomarkers in wastewater has been used to determine community prevalence of infectious diseases, contributing to public health surveillance programs worldwide. Here, we report upon a low-cost, rapid, and user-friendly paper microfluidic platform for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza detection, using loop-mediated isothermal amplification, with signal read using a mobile phone camera. Sample-to-answer results were collected in less than 1.5 h, providing rapid multiplexed detection of viruses in wastewater, with a detection limit of <20 copies mL−1. The device was subsequently used for on-site testing of SARS-CoV-2 in wastewater samples from four quarantine hotels at London Heathrow Airport, showing comparable results to those obtained using polymerase chain reaction. This sensing platform, which enables rapid and localized testing without requiring samples to be sent to centralized laboratories, provides a potentially important public health tool for pandemic preparedness, with a variety of future wastewater surveillance applications in community settings.Item Open Access Paper-based devices for rapid diagnosis and wastewater surveillance(Elsevier, 2022-09-06) Pan, Yuwei; Mao, Kang; Hui, Qinxin; Wang, Baojun; Cooper, Jonathan; Yang, ZhugenInfectious diseases are a global concern for public health resulting in high rates of infection with subsequent health and socio-economic impacts through resulting morbidity and mortality. The emergence of such diseases has motivated researchers to develop cost-effective, rapid and sensitive analytical methods and devices to better understand the transmission routes of infections within populations. To this end, rapid and low-cost diagnosis and testing devices for infectious diseases are attracting increasing amounts of attention, e.g., through using paper-based analytical devices (PADs). In this paper, the recent development of PADs is critically reviewed both for the diagnosis of inviduals and population health, by using devices for testing wastewater. Finally, the review also focuses on PADs for the analysis of bacteria and viruses in wastewater, together with a discussion on thee future development of PADs for rapid diagnosis and wastewater surveillance.Item Open Access Paper-based devices for rapid diagnostics and testing sewage for early warning of COVID-19 outbreak(Elsevier, 2020-11-29) Hui, Qingxin; Pan, Yuwei; Yang, Zhugenoronavirus disease (COVID-19), caused by SARS-CoV-2, evolved into a global pandemic in 2020, and the outbreak has taken an enormous toll on individuals, families, communities and societies around the world. One practical and effective strategy is to implement rapid case identification based on a rapid testing to respond to this public health crisis. Currently, the available technologies used for rapid diagnostics include RT-PCR, RT-LAMP, ELISA and NGS. Still, due to their different limitations, they are not well suited for rapid diagnosis in a variety of locations. Paper-based devices are alternative approaches to achieve rapid diagnosis, which are cost-effective, highly selective, sensitive, portable, and easy-to-use. In addition to individual virus screening, wastewater-based epidemiology has been emerged to be an effective way for early warning of outbreak within the population, which tests viral genome sequence to reflect information on the spread and distribution of the virus because SARS-CoV-2 can be shed into wastewater through the feces and urine from infected population. In this paper, we describe paper-based device as a low-cost and rapid sensor for both diagnosis and testing of sewage for early warning of outbreak. More importantly, the device has great potential for real-time detection in the field, without any advanced facilities or well-trained and skilled personnel, and provides early warning or timely intervention of an outbreak of pandemic.Item Open Access Rapid methods for antimicrobial resistance diagnosis in contaminated soils for effective remediation strategy(Elsevier, 2021-02-05) Zhou, Cailing; Pan, Yuwei; Ge, Shifu; Coulon, Frederic; Yang, ZhugenAntimicrobial resistance (AMR) in the environment is a global concern for public health and recent studies have shown that various soil pollutants (e.g. heavy metals, petroleum hydrocarbons) can cause the emergence of antibiotic-resistant bacteria and antibiotic-resistance genes in the soil. This emergence of AMR in soil is therefore prompting the research community for the development of rapid and real-time monitoring tools to better understand the source, fate and transfer pathway of AMR in contaminated soils. In this respect, the recent development of rapid sensors-based methods has been critically reviewed. The analytical performance of each sensing technique along with their advantages and limitations is further discussed to inform future development needs for the next generation sensors that would allow rapid and multiplexed detection of AMR in contaminated soils. By doing so, it would assist the decision making during remediation project and provide crucial insights into the risk assessment for contaminated sites.