Browsing by Author "Panchal, Vishal"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Data supporting: 'Mechanical Behavior of 3D Printed Poly(ethylene glycol) Diacrylate Hydrogels in Hydrated Conditions Investigated Using Atomic Force Microscopy'(Cranfield University, 2023-03-21 08:49) Hakim Khalili, Mohammad; Panchal, Vishal; Dulebo, Alexander; Hawi, Sara; Zhang, Rujing; Wilson, Sandra; Dossi, Licia; Goel, S.; Impey, Sue; Aria, Indrat1. File AFM-Lines: Raw files for all force-distance curves along with excel file summarizing all the indentions on a single line taken at different height on the surface of the hydrogel. 2. File AFM-Maps: Raw files for all force-distance curves along with excel file summarizing all the indentation maps taken at the middle section on the surface of the hydrogel.Item Open Access In-depth microscopic characterisation of the weld faying interface revealing stress-induced metallurgical transformations during friction stir spot welding(Elsevier, 2021-03-10) Zlatanovic, Danka Labus; Balos, Sebastian; Bergmann, Jean Pierre; Rasche, Stefan; Zavašnik, Janez; Panchal, Vishal; Sidjanin, Leposava; Goel, SauravFriction stir spot welding (FSSW) is a solid-state welding process, wherein the properties of a weld joint are influenced by the state of friction and localised thermodynamic conditions at the tool-workpiece interface. An issue well-known about FSSW joints is their lack of reliability since they abruptly delaminate at the weld-faying interface (WFI). This study explores the origins of the delamination of multiple lap welded aluminium alloy (AA 5754-H111) sheets joined by FSSW at different rotational speeds typically used in industry. Experimental techniques such as the small punch test (SPT), Vickers hardness test, Scanning Electron Microscopy (SEM), Scanning Acoustic Microscope (SAM), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX) and Frequency-Modulated Kelvin Probe Force Microscopy (FM-KPFM) were employed. The experimental results revealed that a complex interplay of stress-assisted metallurgical transformations at the intersection of WFI and the recrystallised stir zone (RSZ) can trigger dynamic precipitation leading to the formation of Al3Mg2 intermetallic phase, while metallic oxides and nanopits remain entrapped in the WFI. These metallurgical transformations surrounded by pits, precipitates and oxides induces process instability which in turn paves way for fast fracture to become responsible for delamination.Item Open Access Mechanical behavior of 3d printed poly(ethylene glycol) diacrylate hydrogels in hydrated conditions investigated using atomic force microscopy(American Chemical Society, 2023-04-05) Hakim Khalili, Mohammad; Panchal, Vishal; Dulebo, Alexander; Hawi, Sara; Zhang, Rujing; Wilson, Sandra; Dossi, Eleftheria; Goel, Saurav; Impey, Susan A.; Aria, Adrianus IndratThree-dimensional (3D) printed hydrogels fabricated using light processing techniques are poised to replace conventional processing methods used in tissue engineering and organ-on-chip devices. An intrinsic potential problem remains related to structural heterogeneity translated in the degree of cross-linking of the printed layers. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were used to fabricate both 3D printed multilayer and control monolithic samples, which were then analyzed using atomic force microscopy (AFM) to assess their nanomechanical properties. The fabrication of the hydrogel samples involved layer-by-layer (LbL) projection lithography and bulk cross-linking processes. We evaluated the nanomechanical properties of both hydrogel types in a hydrated environment using the elastic modulus (E) as a measure to gain insight into their mechanical properties. We observed that E increases by 4-fold from 2.8 to 11.9 kPa transitioning from bottom to the top of a single printed layer in a multilayer sample. Such variations could not be seen in control monolithic sample. The variation within the printed layers is ascribed to heterogeneities caused by the photo-cross-linking process. This behavior was rationalized by spatial variation of the polymer cross-link density related to variations of light absorption within the layers attributed to spatial decay of light intensity during the photo-cross-linking process. More importantly, we observed a significant 44% increase in E, from 9.1 to 13.1 kPa, as the indentation advanced from the bottom to the top of the multilayer sample. This finding implies that mechanical heterogeneity is present throughout the entire structure, rather than being limited to each layer individually. These findings are critical for design, fabrication, and application engineers intending to use 3D printed multilayer PEGDA hydrogels for in vitro tissue engineering and organ-on-chip devices.