Browsing by Author "Pellegrino, Antonio"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Bridging mechanisms of through-thickness reinforcement in dynamic mode I&II delamination(Elsevier, 2017-04-13) Cui, Hao; Yasaee, Mehdi; Kalwak, Gordon; Pellegrino, Antonio; Partridge, Ivana K.; Hallett, Stephen R.; Allegri, Giuliano; Petrinic, NikZ-pin through-thickness reinforcement is used to improve the impact resistance of composite structures; however, the effect of loading rate on Z-pin behaviour is not well understood. The dynamic response of Z-pins in mode I and II delamination of quasi-isotropic IM7/8552 laminates was characterized experimentally in this work. Z-pinned samples were loaded at both quasi-static and dynamic rates, up to a separation velocity of 12 m/s. The efficiency of Z-pins in mode I delamination decreased with loading rate, which was mainly due to the change in the pin misalignment, the failure surface morphology and to inertia. The Z-pins failed at small displacements in the mode II loading experiments, resulting in much lower energy dissipation in comparison with the mode I case. The total energy dissipation decreased with increasing loading rate, while enhanced interfacial friction due to failed pins may be largely responsible for the higher energy dissipation in quasi-static experiments.Item Open Access Dynamic mode II delamination in through thickness reinforced composites(Springer, 2016-09-21) Yasaee, Mehdi; Mohamed, Galal; Pellegrino, Antonio; Petrinic, Nik; Hallett, Stephen R.Through thickness reinforcement (TTR) technologies have been shown to provide effective delamination resistance for laminated composite materials. The addition of this reinforcement allows for the design of highly damage tolerant composite structures, specifically when subjected to impact events. The aim of this investigation was to understand the delamination resistance of Z-pinned composites when subjected to increasing strain rates. Z-pinned laminated composites were manufactured and tested using three point end notched flexure (3ENF) specimens subjected to increasing loading rates from quasi-static (~0m/s) to high velocity impact (5m/s), using a range of test equipment including drop weight impact tower and a split Hopkinson bar (SHPB). Using a high speed impact camera and frame by frame pixel tracking of the strain rates, delamination velocities as well as the apparent fracture toughness of the Z-pinned laminates were measured and analysed. Experimental results indicate that there is a transition in the failure morphology of the Z-pinned laminates from quasi-static to high strain rates. The fundamental physical mechanisms that generate this transition are discussed.Item Open Access On the rate dependent behaviour of epoxy adhesive joints: experimental characterisation and modelling of mode I failure(Elsevier, 2018-01-10) Lißner, M.; Alabort, E.; Cui, Hao; Pellegrino, Antonio; Petrinic, N.The increasing use of adhesive joints in dynamic applications require reliable measurements of the rate-dependent stress-displacement behaviour. The direct measurement of the stress-displacement curve is necessary when using cohesive models in discretised solutions of boundary value problems in solid mechanics. This paper aims to investigate the rate-dependent tensile failure of adhesive joints by using a new experimental methodology – it relies upon the combination of the stress wave propagation theory and digital image correlation methods on high speed footage to quantify the tensile stress and the dissipated energy respectively. For this purpose, the Split Hopkinson Bar methodology was employed – the experimental configuration was optimised using numerical modelling. To prove the sensitivity of our framework, two different adhesives are characterised at different loading rates: the adhesive failure strength was found to increase considerably with the strain rate, while the plastic deformation of these adhesives was reduced. The film adhesive showed superior performance over the particle toughened one. In the final part, a rate-dependent cohesive zone model is proposed, one which captures the measured behaviour and which has the potential to be used in industrial applications.Item Open Access Strain rate dependence of mode II delamination resistance in through thickness reinforced laminated composites(Elsevier, 2017-05-04) Yasaee, Mehdi; Mohamed, Galal; Pellegrino, Antonio; Petrinic, Nik; Hallett, Stephen R.A thorough experimental procedure is presented in which the mode II delamination resistance of a laminated fibre reinforced plastic (FRP) composite with and without Z-pins is characterised when subjected to increasing strain rates. Standard three-point End Notched Flexure (3ENF) specimens were subjected to increasing displacement loading rates from quasi-static (∼0 m/s) to high velocity impact (5 m/s) using a range of test equipment including drop weight impact tower and a Modified Hopkinson Bar apparatus for dynamic three-point bending tests. The procedure outlined uses compliance based approach to calculate the fracture toughness which was shown to produce acceptable values of GIIC for all loading rates. Using detailed high resolution imaging relationships between delamination velocities, apparent fracture toughness, longitudinal and shear strain rates were measured and compared. Confirming behaviours observed in literature, the thermosetting brittle epoxy composite showed minor increase in GIIC with increase in strain rate. However, the Z-pinned specimens showed a significant increase in the apparent GIIC with loading rate. This highlights the need to consider the strain rate dependency of the Z-pinned laminates when designing Z-pinned structures undergoing impact.